Outpost
Packet Message Manager
Scripting Language and Processor

Users Guide

June 2012
Version 2.6 c011

6/11/2012

Outpost Scripting v2.6 Users Guide

Contents
1 ABOUT OUTPOST SCRIPTING ...ttt ettt e s sbabe e s ababae e s e s s s eaaareees 1
1.1 INTRODUGCTION.......ccoiitttiiiee e e ettt e et e e ee et e e e e e e e aaaeeeeeeeeeeatrereeeeeeeantsareeeseeeaesrasseeeeeenans 1
1.2 WHAT IS OUTPOST SCRIPTS? ...uuvvviieeeeeeeiiireeeeeeeeeeitteeeeeeeeeeiaaeeeeeeeeesisseseseeeeesitsareseseeeserrsreeeeeeanns 1
1.3 INTRODUCING THE OUTPOST SCRIPTING LANGUAGEccooiuvviiiieeeeeiiieeeeeeeeeecveeee e eeeeevaveee e eeea 1
1.4 NOTES, ASSUMPTIONS, AND DISCLAIMERScceeiiiiiiutieeieeeeeiiieeeeeeeeeeeiiseeeeeessesssnsnaseeesssssssssseeees 2
1.5 FIND AN ERRORT? ...ttt ettt e e e ettt e e e e et te e e e e s eesmnaaaeeeeeseesnnsanneeeeeenns 2
2 OUTPOST SCRIPTING OVERVIEW ...ttt ettt et e s s sabae e s e s s sananes 3
2.1 ONE FORM, MANY VIEWS......cciitttutriiieeeiiiiiteeeeeeeeeesiteeeeeesseesaaseeseesseesissssseesssessssssseessssmsssssseessennns 3
2.2 MENUS AND TOOLBARScoiiitttiiiieeeieeieeeeeeeeeeeeteeeeeeeseesaaaeeseeseeesasteeseesseessasaeeeesseesnrasneeeesenins 5
2.3 RUNNING OPSCRIPTS.EXEcoouvvvieieeeieiiiieeeeeeeeeesiseeeeeeseeesissereseseeesissessseseeesissssesesesennssssseseseennns 6
3 LI IO 17 s TR 7
3.1 TUTORIAL #1 — WRITING YOUR FIRST SCRIPTceevitiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesereseneeeseeenenens 8
32 TUTORIAL #2 — OSL COMPONENTSccuuutttrieeeeeeieiitrreeeeeeeeesisreeeseeeeesisseseeeeeeesessssereseeesesssrseeeess 10
33 TUTORIAL #3 — PLAYING WITH TEXT STRINGSuuutttiieeeeiiiiirteeeeeeeeeeiirreeeeeeeeeeeinereeeeeeeeesnnseeeees 12
34 TUTORIAL #4 — ARITHMETIC OPERATIONScceitiiiurrieeeeeieeiirreeeeeeeeesisreeeeeeeeeiesssseseeeeesesnrseeeens 14
35 TUTORIAL #5 — LOOPING FOREVERuuuuuiiiiiiiiiiiieieieeeeeeeeieeeeeeeeseesaaaeeeesesessnssasseesssssnnnasseeeess 15
3.6 TUTORIAL #6 — CONDITIONAL LOOPINGooeiiiiiiiiiiiiieeee ittt e e e ee e e e e e snnaaneeee s 17
3.7 TUTORIAL #7 — OTHER CONDITIONAL OPERATIONS.....cceitiiuuiieeeeeieeieereeeeeeeeesnneeeeeeeesssinnnnseeeess 19
38 TUTORIAL #8 — SEND/RECEIVE SESSIONSvtiiiutiieiieieeeeeeeeeeeeeeeeesseeeeesseeesensaeesssnaeeesssneessnnnes 20
39 TUTORIAL #9 — CREATING MESSAGESuvvvviiiieiiiiiiteeeeeeeeeeiieeeeeeeeeeesaaaeeeeeeeeessaaaseeessessnnnaneeeeess 22
3.10 TUTORIAL #10 — WORKING WITH RECEIVED MESSAGEScuvvveiiiieiiiiiiieeieeeeeeiiieeeeeeeeesennnneeeess 23
3.11 TUTORIAL #11 — FILE MANIPULATIONouvvviiiieiiiiiitreeeeeeeeeiiaeeeeeeeeeesanreeeeeeeeessansseseseeesnsnnreeeess 25
3.12 TUTORIAL #12 — INTERACTING WITH THE OUTSIDE WORLD.......cccoevttiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeennes 27
3.13 TUTORIAL #13 — OUTPOST-INITIATED SCRIPTSuutvriiieeeiiiiirreeeeeeeeeiirrereeeeeeenisurereeeeeeesnssrseeeens 28
4 N I S O I e 15 TR 29
4.1 EXAMPLE 1 —POLL 3 DIFFERENT BBSS ...cooiiiiiiiiiiiiieees 29
4.2 EXAMPLE 2 — PERIODICALLY SEND A HEALTH & WELFARE MESSAGEcocovvvviviiiiiiiiiiieeeeieeennns 30
4.3 EXAMPLE 3 — DETECT AND SEND A TEXT FILEuuuuiiiiiieiiiiieiieeeeeeeeeeieeeeeeeeeeeenaaeeeeeeeessnnanneeeeas 31
4.4 EXAMPLE 4 — FORWARDING OUTPOST MESSAGESceviiiiiiiiieeieeeeeeieeineeeeeeeeeeessnaeeeeessesssnnnnseeeess 32
5 COMMAND REFERENCEttt et a e e s ba b e e e e e e s neaes 33
5.1 SUMMARY ...ttt ettt eee et e e e ee st e e e e e e eesataaeeeeeeeesestaaseeeeesssasasseeeeeeseanssaaeeseessennsnnres 33
52 SPECIAL CHARACTERS ...uutttviiiieeiieitteeeeeeeeesetteeteeeeeesestaeseeeseeesessasseeesessansasseeseesseassseesseessenssnnees 34
53 COMMAND REFERENCEccotttuttttieeeeeiiiiereeeeeeeeesitreeeeeeeeestareeeseseeesiarereeeeeeesetsssereseeesnssrreeeees 35
6 ERROR MESSAGESttt e e e s s bbb e e e s e s s s bbb b e e e e e e sesaabareeeessessntes 54
6.1 COMPILER ERRORS.....cuvviiiiiiiiiiiiieeieeeeeeeeieeeeeeeeeeeeaaeeeeeeeeeesaaaaeeeseeeeessasareeeeeeesestaareeeeeeennrarreeeees 54
6.2 RUNTIME ERRORSuvtviiiiiiiieiiieeeeee ettt e et e e e e e et e e e e e e e e e tnaaeaeeeeeeeanrreeens 55

Revision History

Date Revision | Release Notes
4-Apr-2012 2.6 2.06.0004 | Updated to address release content
11-Jun-2012 2.6 2.06.0011 | Add SendOnly statement

6/11/2012

Outpost Scripting v2.6 Users Guide

1 About Outpost Scripting

11

12

13

Introduction

This guide will introduce you to Opscripts and the Outpost Scripting Language, and show
you how to create scripts that will control the flow of the Outpost Packet M essage
Manager program.

What is Outpost Scripts?

If you are reading this, I assume you already have installed and used Outpost. See the
Outpost Users Guide and website for specifics on that program.

Over the years, users have requested additional capabilities with Outpost that just didn’t
make sense to build into the base application due to the extent of the flexibility that was
requested and the complexity of the implementation to achieve it. It seemed that a different
approach was needed that would allow the user to take advantage of the Outpost operational
capabilities without constraining the creative ideas that Outpost users have. This was the
start at looking at scripting as a means of extending Outpost’s capability.

There are 3 components to the Outpost Scripting feature:

1. Outpost Scripting Language (OSL). This language is made up of a series of
commands and capabilities that allow the user develop his/her own capability based
on their local needs. Minimally, the command set addresses all of the expressed
needs that I’ve heard of. Commands and statements are entered into a script editing
window, can be saved for later use, compiled, and run.

2. Outpost Script Compiler. The OSL compiler reads the OSL script and produces a
"virtual machine language" output for subsequent processing. During the
compilation process, it performs all error checking of the script to ensure that the
syntax of the OSL statements are correct. Once complete, the results are reported as
either a Pass or a Fail.

3. Outpost Virtual Machine. Once the script is compiled, it is then executed within
the Outpost Scripts Runtime Monitor window.

All scripting capabilities — editing, compiling, and running — are managed by the Outpost
Scripts program — Opscripts.exe. Other than knowing what you want to accomplish and how
to write the script, the rest is nothing more than pushing the Run button to kick off your
script.

Introducing the Outpost Scripting Language

Currently, there are about 55 commands, functions, and predefined system variables that
allow you to control Outpost in ways that cannot be done from the main Outpost user
interface.

Because OSL is a language, a basic understanding of programming techniques is helpful.
However, between the tutorials and examples shown in this guide, you should be able to get
a script developed and running.

The Outpost Scripting Language does enforce a structure that must be followed. After you
write your script, the Compile step not only produces the virtual machine code, but also
ensures that the script command structure is correct. It will produce error messages if the
command syntax is incorrect. In short, if you follow the (syntax) rules, your script will
compile.

6/11/2012

Outpost Scripting v2.6 Users Guide

OSL is made up of several components:

1.

OSL Structure. The script is defined in a structured approach. As you read through the
tutorials, you will see how a script is put together, what statements are required, where
specific code goes, and the rules that must be followed to get it to compile correctly.

OSL statements. OSL statements are a mix of reserved words that guide the execution
of the program. Statements include things such as | F... THEN... ELSE, or
SENDRECEI VE. You will see similarities between OSL and other languages that
hopefully will make the learning curve easier.

OSL functions. Functions are similar to statements except that they usually take one or
more parameters that further control their execution, such as Pl ay(<fi | ename>) or
Next Fi | eNane(0) . Some functions also return a result.

OSL System Variables. Also called reserved variables, OSL pre-defines several
variables that specifically support Send/Receive sessions (i.e.: BBS, MYCALL, etc.) and
message creation (FROM, SUBJECT, etc.). You choose how, when, and with what value
these variables are set based on the flow of your script.

1.4 Notes, assumptions, and disclaimers

1.

Before beginning with Outpost Scripts, you must be familiar with setting up Outpost,
creating messages and initiating Send/Receive Sessions with a BBS. If you do not know
how to do this, DO NOT START working with Outpost Scripting. This application
directly builds on your understanding of Outpost.

As mentioned, having some type of programming background will help with your
Outpost Scripting efforts. If programming is new to you, I recommend you step through
the entire Tutorial Series, enter all examples, and play with them to build your comfort
level with scripting in general.

OSL is not Visual Basic, C++, Pascal, FORTRAN, or any other language. However, you
will see similarities as well as differences with other programming languages with which
you may be familiar. If you follow the syntax rules spelled out here, you should not have
any problems with Opscripts.

Error handling will continue to evolve over time. Most of the errors are properly trapped
and reported, however, it is not 100% foolproof. If a compile error points to a line
number, you may need to look “in the vicinity” of the code to find the problem.

Finally, OSL is an evolving language. If you have an idea that you think would further
enhance the usefulness of Outpost Scripting, let me know.

15 Findan Error?

If you find an error or unsure how Outpost Scripting is supposed to run, post a message to
the Outpost Users Group or send me email to kn6pe@arrl.net, include the script in question,
and any information on what you were attempting to accomplish.

6/11/2012

mailto:kn6pe@arrl.net

Outpost Scripting v2.6 Users Guide

2 Outpost Scripting Overview

21

All Outpost Scripting activities are managed and controlled by the Opscript.exe program.
This chapter provides an overview of the Outpost Script utility and gives you a sense of the
navigation.

Oneform, many views

When you start the program, you will see the main window that tells you that Opscripts.exe
is ready.

F
File Edit Actions Help
Mew | Save |Disp|ay| F Stop | Fesume
COutpost Scripting Ready
| Script: E:\DutposthCompilerstrmpscript. kit | 00:00:00 v

There is only one main form in which you will be operating. However, depending on what you
are doing, it will look different. While we will cover the different menus and controls in a
moment, the control that changes what you are looking at is the Display control.

There are thee primary views that you will see.

1. Script Editor. When in this view, you have editing access to the text window for creating
or updating your script.

2. Compiler Output. When in this view, you can see the compiled output of your script
prior to running it.

3. Runtime Monitor. When in this view, you see the execution of your script, the output of
any Print statements, and status and update messages displayed by various commands.

By repeatedly pressing the Display Control, you cycle through each of the three views in this
order. You will always know which view you are in by the changing highlighted label above the
text window. Here’s what each of the views will look like.

6/11/2012

Outpost Scripting v2.6 Users Guide

After starting a new script or loading an existing script, the form is set for editing the script.

i, Outpost Scripting

File Edit Options Help

M | Save |Displa_l,l| Fiun | Sitop |F|esume|
Script Editor
SCRIET

Var FileName a3 String
Var CutMessage as String

BEGIN

FileName = "Weather.txt"

BBES = "EEFB-2"

CutMessage = "The file name " & FileHame & " wi

Print {CutMessage)

By selecting the File > Compile only menu option, the script is compiled. Press Display to
rotate to the Compiler Output form. You may find this interesting, but not particularly useful.

in. Dutpost Scripting

File Edit Options Help

Run | Stom |Hesume|

Compiler Output

WREMST EQU SAO01E
ALOC MYCALL 3
ALOC TACCALL 35
ALOC BBS 5

ALOC THC 5

ALOC FILTER 3
ALOC RETRIEVE 3
ALOC FROM 3

Pressing the Run control causes the script window to shift to the Runtime Monitor and begin
executing the script. All of these views can be seen sequentially by pressing Display.

. Dutpost Scripting

File Edit Options Help

Run | Stom |Hesume|

Mew | Sane

Run-time konitar

STARTING SCRIPT EXECUTICN
The file neme Weather.tixt will be sent to K&FB-
END OF SCRIPT EXECUTICH

6/11/2012 4

Outpost Scripting v2.6 Users Guide

2.2 Menusand Toolbars

The Program Controls portion of the User Interface controls the operation and execution of
all program tasks.

isj, Dutpost Scripting

File Edit Options Help

= | Save |Display| i | Stap |Hesume|

Cutpost Scripting Ready

Figure 1: Main Screen Menu and Tool Bar

The Outpost menus provide different options for setting up and controlling the application.

NOTE: Some of the more common menu items are also implemented as Tool Bar buttons. See the
associated menu item below for their description.

Menus Description

File New: Sets up for a new script to be entered.
Automatically adds the 3 lines that that every script needs

to have...
SCRIPT

BEGIN
END

Open: Opens a form that allows the user to select a
previously existing script for editing or running.

Save: Saves the script back to the Scripts directory. This
option is only enabled after a New script has been started
or a script has been retrieved via an Open command.

Save As: Opens a form to allow the user to select a
directory and enter a file name to save this script. The
script is saved as an ASCII text file. Script files default to
a<script_name>.txt file extent.

Compile Only: Causes the script to be compiled only.
The script is not run. The Output of the compiler is stored
in a file named <script_hame>.ocCs .

Run: Causes the script to be compiled, and then run. If
the script was previously compiled, the script is only run.

Most recently used: Displays the list of scripts
previously opened. Up to 10 entries can be added.

Edit Cut: Copies and deletes any highlighted text from the
script editor. The text is placed in the MS-Windows
clipboard.

Copy: Copies any highlighted text in any from the script
editor. The text is placed in the MS-Windows clipboard.

6/11/2012 5

Outpost Scripting v2.6

Users Guide

Menus

Description

Paste: Inserts text from the clipboard at the position
where the cursor is located.

Clear All: Erases the contents of the script editor.

Select All: Selects all text in the script editor.

Options

Run Debug: Dumps the initialization of the script to the
Runtime window.

Verbose: Specific commands generate more detailed
information when this option is checked.

The following are other controls found on the main form.

Commands Description
Display Changes the text display in the following order:
1. Script Editor
2. Compiler Output
3. Runtime Monitor
This then rotates around to the top.
Run Same as the Run command above.
Stop Stops the script from running. Press Run to restart the
script from the beginning.
Resume Resumes execution of the script after the Pause(0) script

command (pause and wait for user interaction) is executed.

2.3 Running Opscripts.exe
There are 3 ways to run the Opscripts program:

1.

From Outpost. From the Outpost main menu, select Tools > Scripts... select Scripting

Tool.

From Windows Explorer. Navigate to the Outpost program directory, and double-click

on the Opscripts.exe icon.

From a user defined .bat file. Opscripts can be run outside of Outpost with optional
command line parameters and switches that are passed to the program. Run command

format is:

Opscripts.exe [command_line_options]

Available parameters and switches

-f <filename> Starts Opscripts with the named script file. When loaded, the script

automatically compiles and runs.

-d Turns Debug on. This is the same function as selected from the

Options menu described above.

-V Turns Verbose on. This is the same function as selected from the

Options menu described above.

6/11/2012

Outpost Scripting v2.6 Users Guide

3 Tutorials

This chapter includes 13 tutorials that will walk you through many of the OSL statements,
functions, and commands. The tutorials are as follows:

3.1. Writing your first script. This session gives you a basic overview of the Opscripts.exe
main window, describes some of the controls, and gives you a chance to create and run a
very simple script.

3.2 OSL components. This section overviews all the components that that makes up OSL.

3.3. Playing with strings. This is an overview of how OSL can use strings to enhance the
overall control and presentation of information.

3.4. Arithmetic operations. This session describes the use of mathematical equations to
perform simple calculations. When dealing with packet, there really should be nothing
more complicated than incrementing a counter.

3.5. Looping forever. This session shows how to set up unconditional looping on a block of
code. Other examples of this will show up in later sections.

3.6. Conditional looping. This session describes the statements that let you loop on a block
of code as long as a specific condition is met.

3.7. Other conditional operations. The IF... THEN... ELSE series of statements are
described and show how checks can be made and acted on based on the outcome of the
test.

3.8. Send/Recelve sessions. One of the biggest reasons for Outpost scripting is to support
the ability to select and poll different BBSs automatically. This will be introduced here.

3.9. Creating messages. This session shows how you can create a valid Outpost message
from within a script and prepare it for sending.

3.10. Working with received messages. As a follow-on to the previous session, this section
shows how received Outpost messages can be identified, accessed, and acted on, such as
for forwarding, moving, or saving to a disc file.

3.11. FileManipulations. This session describes how to use files in support of all of the
above.

3.12. Interacting with the outsideworld. There are a series of statements that help you do
things outside of Outpost Scripting.

3.13. Outpost-initiated scripts. Outpost can call Opscripts with a script name when starting
or stopping Outpost, or as an alternative to the standard Send/Receive process.

6/11/2012

Outpost Scripting v2.6 Users Guide

3.1 Tutorial #1 —Writing your first script

Outpost Scripting (Opscripts) and the Outpost Scripting Language (OSL) extend the
automation provided in the Outpost application by allowing the user to manipulate different
Outpost settings outside of the program with user-defined scripts. This first tutorial will
guide you though some of the OSL basics that you will need to know.

Getting Started

1. Run Outpost. From the Tools Menu, select Scripting. Alternatively, using Windows
Explorer, you can navigate to the Outpost programs directory. Verify that the
Opscripts.exe program is there, and then double-click on the file. You should get the
following display. Note that 2 options are available: New, and Display.

e
File Edit Actions Help
Mew | Save |Display| F Stop | Fesume
Cutpost Scripting Reacdy
Script; E:A\DutposthCompilerstrmpscript kit | 00:00:00 4

2. Press New. This button sets up Opscripts for entering a new script. After pressing New,
2 things happen:

i. The window header changes to Script Editor, and

ii. Three lines are inserted in the script edit window.

SCRIPT

BEGIN

END

All Outpost scripts contain these 3 lines that are the absolute minimum for a script to run.
i. Every script must have the word SCRIPT as the first executable line.

ii. The BEGIN statement marks the beginning of where the script statements are
placed.

ii. The END statement must be the last statement in the file.

6/11/2012 8

Outpost Scripting v2.6 Users Guide

Press Run. With these 3 lines, the script gets compiled, the view shifts to the Runtime
Monitor window, and the script starts running:

STARTING SCRIPT EXECUTION
END OF SCRIPT EXECUTION

Congratulations! You just created your first script! ... and by pushing only the New
and Run buttons.

Not surprising, this script does... nothing! But it did run. Try removing any of these
lines and press Run to check out the different error messages.

Press Display. Note that repeatedly pressing Display rotates around 3 views: the
Script Editor, the Compiler Output, the Runtime Monitor, and then back to Script
Editor.

To make this script a bit more interesting, let’s try to do something simple (we will
discuss all these statements in later sessions).

Press Display to get back to the Script Editor window; make the following changes
EXACTLY as shown:

SCRIPT
VAR x AS NUMBER

BEGIN
X =5
Print(“Hello World!™”) “ Prints to the display
Print(“The value of x is ” & x) “ Prints a string and number
END

Press Run. Every time the script is changed, it gets compiled, the status is indicated in
the status line at the bottom, and then the script is run. Note that the Display window
header changes from Script Editor to Runtime Monitor. The following is the output
from this run:

STARTING SCRIPT EXECUTION
Hello World!

The value of x Is 5

END OF SCRIPT EXECUTION

To save this script, press Display until you are see at the Script Editor view, press
File > Save As, select the directory and file name, such as Tutorial-01. txt, then
press OK.

6/11/2012

Outpost Scripting v2.6 Users Guide

3.2 Tutorial #2—-OSL components

While these first scripts were not too exciting, they do start to highlight some of the
capabilities that OSL offers.

1.

Numbersand Strings. The two types of data that OSL supports are numbers (any
positive or negative number, includes decimals) and strings (ASCII characters
surrounded by quotations).

User and System Variables. OSL lets you define variables that can be assigned and
accessed throughout your script. Variable declarations are the first real commands that
you enter in the script. They are placed between the SCRI PT and BEQ N statements.

B® outpost Scripting

File Edit Options Help

Hew | Save |Displa_l,l| Run | Stop |Hesume|
=cript Editor
SCRIPT

VLE ¥ =3 NUMBER
VAE Fneme as STRING
VAE temp a3 STRING
BEGIN

END

In this example, 3 user-defined variables are defined: “X” is defined to hold a number,
and “Fname” and “t enp” are defined to hold strings. Any number of variables can be
defined.

Assignments. With your variables defined, OSL lets you assign data to these variables.
Assignments could be as simple as:

FName = “WX.txt” assigns a file name to a user-defined variable
counter = 1 assigns a number to a user-defined variable
BBS = “K6FB-2~ assigns a name to a system-defined variable

Expressions. OSL also lets you to do more than just simple assignments. You can write
your own arithmetic or string expressions that support some aspect of script control and
execution. Expressions could be as simple or as complex as necessary:

X=X+1 a simple way to create a counter
X = Y/(5-2) a more complex arithmetic expression
Msg = “file is ” & FName strings can be assigned and manipulated

6/11/2012

10

Outpost Scripting v2.6 Users Guide

5. Statements. There are several OSL statements that help control how the script behaves.
Statements are divided into 4 different categories:

General Message Session Conditional
Begin CreateMessage SendReceive If... Else... Endif
End SendOnly Loop... EndLoop
Exit While... EndWhile
Beep OnError

Clear

Print

Script

Var

6. Functions. OSL Functions are similar to statements, except they can take a parameter on
which they may act. OSL has 4 different categories of functions:

General File I/O Message
Pause Delete Play FindMessage
FindWord Exists Print MoveMessage
NextWord FindFile Run NextMessage

GetFileName Runw Expire

MoveFile

NextFile

ReadFile

WriteFile

7. System-defined variables. OSL predefines 16 System Variables that the user can use to
help set up various script functions.

Message Session System
BBS BBS TRUE
FROM TNC FALSE
TO MYCALL ON
SUBJECT TACCALL OFF
MESSAGE RETRIEVE CRLF
MTYPE FILTER

BBSMSGNO SRNOTE

LMI

RECEIPTS

DATETIME

8. Commentsin the Scripts. You noticed in Tutorial 1 that there are comments on a
couple of the lines. All comments begin with an apostrophe “ ” ” and end at the end of
the line with a Carriage Return (Enter Key). Comments can be inserted anywhere on a
line, and the file can contain any number of them. All comments are ignored during
compilation making them a great way to document your scripts.

NOTE: As you start writing scripts, I strongly urge you put comments in them; it will make it easier
for you as well as for the next person who comes along to understand what you are
attempting to do.

NOTE: See the Command Reference later in this document for a description of the above statements
and commands. We will play with many of them in the following sections. However, some
of the more intuitive commands [will leave up to you to explore.

6/11/2012 11

Outpost Scripting v2.6 Users Guide

3.3 Tutorial #3 —Playing with Text Strings

So, with some fundamentals behind us, let’s jump into OSL. At the end of this tutorial series

(all of them), I hope to have introduced to you many of the commands and concepts that will
help you get your own scripts up and running. Strings are as good a starting point as any.

Definition: A string is one or more ASCII characters that has some meaning to the user

either as printable text or as a value to be assigned to a variable. Once a text string is
defined, it can be assigned to a variable, appended to another string, and/or printed.

Getting Started

1.

All strings start and end with double quotation marks. For instance, the following are
examples of strings:

= “Beginning Send/Receive Session # ”
= “K6FB-2”

Strings can be assigned to a variable to be used over and over again. For example:

SCRIPT
Var FileName as String
Var OutMsg as String

BEGIN
FileName = “Weather.txt”
BBS = “K6FB-2"
OutMsg = “The file name ” & FileName & “ will be sent to ” & BBS
Print(OutMsg)
END

In the above example, 2 variables -- Fi leName and OutMsg — are defined as user
variables of type String. This means that only strings (characters surrounded by
quotations or other string variables) can be assigned to them. With these declarations,
they can then have strings assigned to them. For instance,

= FileName, auser-defined variable, is assigned the string “Weather . txt”
= BBS, a system-defined variable, is assigned the string “K6FB-2"

= OutMsg, another user-defined variable, is assigned a mix of strings and variables
that were concatenated together.

Let’s try it: Enter the above script by first pressing New, and then type it in exactly as
shown. Once entered, press Run to compile and run the script. It should produce the
following output:

START OF SCRIPT EXECUTION
The file name Weather.txt will be sent to K6FB-2
END OF SCRIPT EXECUTION

Concatenating Strings

Take a look at the script assignment to OUtMsSQ. You may have observed this line is assigned
more than one thing. Two or more strings or variables holding strings can be joined together
or “concatenated” using the ampersand (“ &) sign. Just as the PLUS sign (+) adds 2
numbers together, the ampersand (“ &) sign lets you join 2 or more strings together. This is
an important concept since it does allow you to mix text, variables, and calculated results
together in a single text line.

6/11/2012

12

Outpost Scripting v2.6 Users Guide

Really Long Strings

5.

There could be situations where you may need to create a really long string and to keep it
relatively neat in the script. Here’s an example of creating a multi-line string on the fly.

SCRIPT
VAR OutMsg as string

BEGIN

OutMsg =“Hi Cap,” & CRLF &
“This is an OSL-generated message.” & CRLF &
“ 73, Jim”

Print(OutMsg & CRLF)

OutMsg = “In this case, the string is longer than the form ” &
“and | want it to wrap around the Runtime Monitor. Note that ” &
“OSL continues to process the same assignment to OutMsg ” &
“across multiple lines.”

Print(OutMsg)

END

After entering this script, here’s the output:

STARTING SCRIPT EXECUTION

Hi Cap,

This is an auto-generated message.
73, Jim

In this case, the string is longer than the form and I want it to
wrap around the Runtime Monitor. Note that OSL continues to
process the same assignment to OutMsg across multiple lines.

END OF SCRIPT EXECUTION

In the first Print Statement, we used a system variable named CRLF. This is an OSL
System Variable that inserts a Carriage Return/Line Feed combination on a line of text.
It is joined to other portions of the string using our trusty “&”.

In the second Print Statement, note that one very long run-on string of text is created.
Because OSL expects to see a closing quotation for a text string before the end of a line,
to create really long strings, end the text string with quotation marks, add an ampersand
mark to indicate a continuation, and on the next line, continue the text string within
quotation marks.

While the above method works well, the other approach you could use is to put the text in
a file, and then read the file into the string variable.

SCRIPT
VAR OutMsg as string

BEGIN

OutMsg = ReadFile(*“MsgToCap.txt’)

We will cover the ReadFi le statement in a latter Tutorial.

6/11/2012

13

Outpost Scripting v2.6 Users Guide

3.4 Tutorial #4 —Arithmetic Operations

Not that there is a lot of need to perform heavy math with packet radio, there may be some
situations where you need to do some basic arithmetic in your script.

Definition: A number is any combination of digits. OSL supports addition (+), subtraction
(-), multiplication (*), and division (/) operations on numbers and variables that store
numbers. It also enforces operational precedence for execution.

Getting Started

1.

Here are some examples of math operations:

SCRIPT
Var X as NUMBER

BEGIN

X =0 “ initially set X to O

X=X+1 “add 1 to X

Print(“The result is ” & x) “ the result should be 1

X = X*5+10 “ x was 1 from the previous calc
Print(“Calc’ed as ” & x) “ now, the result should be 15

X = X*(56+10) “ x was 15 from the previous calc
Print(“Math in parens: ” & X) “ now, the result should be 225
END

Enter the above script (press New first) and press Run. Here’s what you will see:

START OF SCRIPT EXECUTION
The result is 1

Calc"ed as 15

Math in parens: 225

END OF SCRIPT EXECUTION

The first calculation (x = x + 1) is a good way to create a counter when you want to keep
track of how many times you have done something.

The 2nd calculation takes the result of the first calculation and uses it in this equation.
Note how the precedence was enforced: x = x*5+10: with x as 1, we first multiple 1*5
(=5), then add 10, equaling 15.

In the 3rd equation, with x previously calculated as 15, the parenthesis causes 5+10 to be
executed first (equals 15), then multiplied by x (15) equaling 225.

Variables are not case sensitive. The variable “X” can be referenced as both “X” (upper
case) and “x” (lower case).

6/11/2012

14

Outpost Scripting v2.6 Users Guide

3.5 Tutorial #5— L ooping forever

More than likely, you may want to set up a script that repeats a task over and over again.
You can do this with the LOOP... ENDLOOP statements. When using these statements, you
are performing UNCONDITIONAL looping, meaning, it will continue to loop regardless of
what else is going on.

Getting Started

1. Here’s an example:

SCRIPT
Var x as NUMBER

BEGIN
X =0 “set x to O

“ Loop on the following code. Press STOP on the Runtime Monitor
“ to stop processing

LOOP
X =x+1 “ count the # of passes
Print(“This is pass # ” & xX) “ write the results
pause(10) “ pause for 10 seconds

ENDLOOP

END

2. Enter this script and press Run. Here’s what you should see:

START OF SCRIPT EXECUTION
This is pass # 1

Pausing for 10 seconds
This is pass # 2

Pausing for 10 seconds
This is pass # 3

Pausing for 10 seconds

(I pressed STOP at this point)

3. After a couple of passes, press Stop to stop the script from running.
LOOP... ENDL OOP statements

The LOOP... ENDLOOP statements are a set that work together. Any statements in between
are part of the loop. If the ENDLOOP statement is omitted, an error occurs.

Note how the statements between the LOOP and ENDLOOP statements are indented. While
not necessary, indenting helps improve readability of the script. You can either enter spaces
(press the space bar) or press the CNTL-TAB (not TAB) key.

The LOOP... ENDLOOP command set will loop forever. Because there is no programmatic
way in the script to stop processing or break out of the loop, the only way to stop the script is
by the user pressing the Stop button on the Runtime Monitor form.

The LOOP... ENDLOOP command set is an excellent way to set up a re-occurring task that
you want to perform. Later on, you will see how we will use it to control polling a series of
BBSs that exist on the same frequency.

Pause statements

In the above script, we introduced the PAUSE(<seconds>) statement. This statement
causes the script to pause execution for the number of seconds listed within the parenthesis.

6/11/2012

15

Outpost Scripting v2.6 Users Guide

So, a value of 10 means 10 seconds; 600 = 10 minutes (60*10=600), 36000 = 10 hours
(60*60*10=36000). The Pause function writes its own message letting you know how long
the script is about to be paused. It also initializes the count-down timer in the lower right
corner of the form that shows the time left for this pause operation.

It is strongly advised that you put at least a 1 second pause in any LOOP that you create to
ensure the script does not “run away” (you loose control to stop).

If the Pause function parameter is set with a “0” such as Pause (0), then the script will
stop and prompt for the user to press the Resume button on the Runtime Monitor window.
A Pause (0) implementation would show the following:

START OF SCRIPT EXECUTION
This is pass # 1
Paused... press '""Resume' to continue

6/11/2012

16

Outpost Scripting v2.6 Users Guide

3.6 Tutorial #6 — Conditional L ooping

OSL also supports looping as long as a specific condition is met. This is referred to as
Conditional looping: as long as the condition is true, the loop continues.

Getting Started

1.

Here’s an Example

SCRIPT
Var X as NUMBER

BEGIN

X=0 “set X to O

WHILE X < 3 “ loop as long as X is less than 3
X=X+1 “ increment X
Print(“This is pass # ” & X)

ENDWHILE

END

Enter the above script and press Run.

START OF SCRIPT EXECUTION
This is pass # 1

This is pass # 2

This is pass # 3

END OF SCRIPT EXECUTION

WHILE... ENDWHILE statements

The WHILE.. ENDWHILE statements are another pair that work together. Any statements
put between these statements will be executed as part of the loop as long as the condition on
the WHILE statement is TRUE. If the ENDWHILE statement is omitted, an error occurs.

Conditions are based on relationships between both sides of an arithmetic expression. Valid
OSL relationship operators are:

< is the left side less than the right side?
<= is the left side less than or equal to the right side?
> is the left side greater than the right side?
>= is the left side ~ greater than or equal to the right side?
= is the left side equal to the right side?

Think through the logic of why three passes were executed: before the 1st pass, “X” was 0...
the condition is true (0 is less than 3). However, once in the loop, X is incremented to 1 and
“Pass 17 is printed.

On the 2nd pass, the condition is also true (1 is less than 3), however, X is incremented to 2
and “Pass 2” is printed.

Note that the Pause function was not needed since there was a specific condition that would
be met to exit the loop.

Think about this...

Getting the initial setting of “X” correct (X =0? X = 1?), as well as the condition to
check, is critical for accurate execution of conditional loops.

What happens if you put the counter step (x = x + 1) after the Print statement? Try this.
Can you explain the results? You can place the counter wherever you wish and may
need to adjust the WHILE condition to get the results you want.

6/11/2012

17

Outpost Scripting v2.6 Users Guide

Another type of test

3.

Here is another example of conditional looping:

SCRIPT
Var FNAME as string

BEGIN
FNAME = “Weather.txt” “ initialize with a file name
WHILE Exists(FNAME) = TRUE “ loop as long as the file exists
Print(“The file ” & FNAME & “ is still there”)
pause(60)
ENDWHILE
END

In this case, instead of checking for an arithmetic condition, we are checking for a file
condition. We will look at the Exists function in a later section, but this is to
demonstrate that checking the result of a function call can also be used as part of
conditional check.

Regarding TRUE. True is a system variable against which functions like EXiSts can
be tested. FALSE could also be used for tests like these.

6/11/2012

18

Outpost Scripting v2.6 Users Guide

3.7 Tutorial #7 — Other Conditional Operations

One of the standard conditional checks that exist in many program languages is the
IF.. THEN.. ELSE.. statements. OSL supports this construct that can be used to branch
depending on some condition.

Getting Started

1. Here’s an example:

SCRIPT
Var x as NUMBER

BEGIN
X =3
IF x > 5 THEN
Print(“X is greater than 5”)
ENDIF
END

2. Not to surprising, when you load and run this, you get this reply:

STARTING SCRIPT EXECUTION
END OF SCRIPT EXECUTION

3. Note how the IF statement tested to see if X is GREATER THAN 5. In the above
example, the answer was NO, and the condition was not true. As a result, the code
immediately following the IF statement was skipped. If the condition was TRUE, then
the code would have been executed.

4. The IF... THEN could also be written with the ELSE option...

SCRIPT
Var x as NUMBER

BEGIN
X =3
IF x > 5 THEN
Print(*“X is greater than 5”)
ELSE
Print(*“X is not greater than 57)
ENDIF
END

5. At least with this script, it is a bit more interesting. Enter and run it...

STARTING SCRIPT EXECUTION
X is not greater than 5
END OF SCRIPT EXECUTION

IF... THEN... ELSE... ENDIF statements

The minimal structure is IF... THEN... and ENDIF. They are best read as follows (using
the above example):

“IF X s greater than 5, THEN”... because the condition is TRUE, you execute the code
immediately in the next line. However, if the condition is FALSE (as it was above), the code
following is skipped.

Using ELSE is optional and allows for some other action to occur if either the condition is
TRUE or FALSE.

6/11/2012 19

Outpost Scripting v2.6 Users Guide

3.8 Tutorial #8 — Send/Receive Sessions

Finally, we are getting to something specific to Outpost. One of the original requests was for
Outpost to poll a variety of BBSs without any user interaction.

Getting Started

1. Here’s an Example

SCRIPT
BEGIN
BBS = “K6FB-2”
TNC = ““GARAGE-TNC”
MYCALL = “KNGPE”
RETRIEVE = ““PB”
SENDRECEIVE

END

2. Itis that simple. Give ita try, except use a BBS and TNC Interface name that you have
set up on your Outpost system. Make sure Outpost is running, then press Run.

STARTING SCRIPT EXECUTION

BbsName = K6FB-2

TncName = KPC3

StationlD = KN6PE

TacCall disabled

Retrieving = PB

Filter =

Initiating a Send/Receive Session
END OF SCRIPT EXECUTION

System Variables

The BBS, TNC, MYCALL, and RETRI EVE are system-defined variables. You assign them
values, and they then can be used to set up a valid Send/Receive Session or as part of some
other output process. These 4 entries minimally identify what must be set up for the
Send/Receive session.

SENDRECEIVE Statement

The SENDRECEIVE statement is used to initiate a Send/Receive session with Outpost. It
takes the system variables defined above and passes them to Outpost. Outpost then changes
its configuration to match what is defined here and executes a send/receive session with these
settings. Outpost Scripting then waits for the Outpost session to end before continuing to
execute.

For Retrieving, you can enter any combination of these 4 characters: P (Private), N (NTS), B
(Bulletin), or F (Filtered). See the Outpost users guide for more details on these options, and
the command reference for all System variables.

3. While the above was fun, I don’t need OSL to check a single BBS. So, lets combine a
couple of statements that we learned about to make it more interesting:

SCRIPT

BEGIN

LOOP
BBS="“K6FB-2""; TNC="“GARAGE-TNC”’; MYCALL=*“KN6PE”’; RETRIEVE=*PB”’
SENDRECEIVE
Print(*“)
BBS=*W6SJC-1""; TNC=*“GARAGE-TNC”’; MYCALL=*“KN6PE”’; RETRIEVE=*P”’
SENDRECEIVE
Print(“)

6/11/2012

20

Outpost Scripting v2.6

Pause(600)
ENDLOOP
END

When this is loaded and run, here’s the output.

STARTING SCRIPT EXECUTION

BbsName = K6FB-2

TncName = KPC3

StationlD = KN6PE

TacCall disabled

Retrieving = PB

Filter =

Initiating a Send/Receive Session
Send/Receive Session complete!

BbsName = W6SJC-1

TncName = KPC3

StationlD = KN6PE

TacCall disabled

Retrieving = P

Filter =

Initiating a Send/Receive Session
Send/Receive Session complete!

Pausing for 600 seconds
(I pressed stop at this point)

This script now starts to look useful. Here’s a couple of things to note:

= Multiple statementson one line. Yes, OSL supports this. You can separate
statements with a semi-colon. The above example is 1 of the 2 times where I think
this is acceptable since it keeps the script a bit more visually compact.

» The use of the LOOP / ENDLQOOP and the PAUSE statements sets up the script to
loop on these 2 BBSs. 600 seconds is 10 minutes.

= Along with changing the BBS name, you could also change the MYCALL to check
for messages sent to a Club call sign, or some other member.

= The PRI NT statement is used more for formatting. In this example, I wanted a blank
line between session listings.

= Above all, the BBS and TNC must be previously setup in Outpost (Set up > TNC
and Set up > BBS) before running this. If either are not setup, Outpost will pop
up a window and report that the BBS or TNC are missing.

WARNING! This missing BBS or TNC warning may not pop to the front of the Scripting form!

6.

7.

What happens if you want to check a BBS on a different frequency? OSL cannot
change your radio’s frequency (yet!). However, it could tell you to do so. Here’s a
script snippet that addresses this:

BBS="“K6FB-2""; TNC="“GARAGE-TNC”; MYCALL="KN6PE”; RETRIEVE="“PB”
SENDRECEIVE

Print(“Change the Frequency to 144.9707)

Pause(0)

BBS="W6SJC-1""; TNC="“GARAGE-TNC”’; MYCALL=*KN6PE”; RETRIEVE=*P”

At runtime, the user is now prompted to change the frequency. Once changed, the user
then presses the Resume button on the Runtime monitor form.

6/11/2012

Users Guide

Outpost Scripting v2.6 Users Guide

39

NOTE:

Tutorial #9 — Creating M essages

There are times when you may want to create a message automatically based on some event
that you detected. For instance, one Outpost user wanted to post NOAA weather bulletins to
the packet community whenever the message arrived over the internet (he figured out how to
get a text file off of a website and onto his PC for Outpost to pick up, not described here).

Getting Started

1. Here’s an example:

SCRIPT
BEGIN

BBS="“K6FB-2""

FROM="KN6PE™

TO="KEGAFE”

SUBJECT=*“Status of the system”

MTYPE=*“Private” “ Private message
RECEIPTS="“R” “ Request a Read Receipt
MESSAGE=*“Hi Cap, this is an auto-generated message. 73, Jim”
CREATEMESSAGE

END

2. Give it one a try. When you press Run, you see the following:

STARTING SCRIPT EXECUTION
Initializing a new message
Saved new message 1D=22
END OF SCRIPT EXECUTION

3. Similar to the last section, BBS, FROM TQ, SUBJECT, MIT'YPE, RECEI PTS, and
MESSAGE are system-defined variables. You set them here, then when executing the
CREATEMESSAGE statement, a valid Outpost message is created and stored in the
Outpost message database.

4. MYTYPE needs to be set to 1 of 3 values: PRI VATE, NTS, or BULLETI N. If none is
specified, then it defaults to PRIVATE.

5. In the above example, if you were to run Outpost and navigate to the Out Tray, you
would see this message loaded and ready to be sent.

6. Because one-line messages are not always sufficient, OSL does let you read the message
text from a file. For example, suppose you have a message in the file WkReport . t xt
that you want to send. You can do the following:

BBS=*‘K6FB-2""
FROM="KNGPE”
TO=*“ALLUSR”

SUBJECT=“Weather Bulletin”

MTYPE=*“Bulletin”

MESSAGE=READF I LE (“WxReport.txt™)
CREATEMESSAGE

7. In this instance, the READFI LE function is used to read the contents of the file
WxReport.txt and store its contents into the MESSAGE variable.

Going back to the original statement regarding the NOAA weather bulletins, check out
Script Example #3 for a full view of what the script would look like. Again, it assumes that
you figured out how to write a file to a location that Opscripts can find and load.

6/11/2012

22

Outpost Scripting v2.6 Users Guide

3.10 Tutorial #10—Working with Received M essages

What happens if you are looking for a message coming in to Outpost and want to do
something with it? There are a series of statements and functions that help you do things
with messages that are received by Outpost.

NOTE: Before proceeding, I recommend reading the Command Reference on these statements:
FindMessage, NextMessage, and MoveMessage.

1. Here’s the example:

SCRIPT
VAR MsglD AS NUMBER
BEGIN

“ Look for a message in the In Tray from K6KP; forward it to KN6PE
FindMessage(1, 2, “K6KP’)
MsgID = NextMessage(0)

While MsgID > 0O

TO = “KN6PE” “change the destination
MESSAGE = “OSL-forwarded from K6KP” & CRLF & MESSAGE
CreateMessage
SendReceive

MoveMessage(MsglID, 4) “ Move original message to the Archive
MsgID = NextMessage(0)

EndWhile
END

2. The Fi ndMessage and Next Message statements are another pair of statements that
work together. They allow you to search for one or more messages that match a certain
string pattern for any field that constitutes a message, such as BBS, From, To, Subject,
and Message field.

FindMessage needs 3 parameters to be set.

#1 Folder: this parameter is a number that corresponds to an Outpost folder to search.
Valid numbers are:

1. InTray

2. Out Tray

3. Sent Folder

4. Archive Folder
5. Draft Folder

6. Deleted Folder

#2 Field: this parameter is a number that corresponds to an Outpost Message field to
search. Valid numbers are:

1. BBS

2. FROM

3. TO

4. SUBIJECT
5. MESSAGE

#3 Pattern: this parameter is a string pattern to match. Wildcard use (KN6%*) is
allowed. The pattern to match is not case sensitive.

6/11/2012 23

Outpost Scripting v2.6 Users Guide

For instance, as the above script describes, suppose you are looking for messages from
K6KP. The Fi ndMessage Command sets up Opscripts to look in the In Tray (1%
parameter, the “1”), at the From Field (2™ parameter, the “2”), and look for matches of
“KBKP”.

We want to forward any message from K6KP to KN6PE. The Fi ndMessage sets up
the message search, and the 1* NextMessage statement attempts to retrieve the
Outpost Message Identifier. This Message ID is an internal Outpost pointer to an
Outpost message. Valid Message IDs are any number that is not zero (0).

The Next Message statement loads all fields of the message into the Opscripts
variables: BBS, FROM TQ, SUBJECT, MESSAGE, DATETI ME, LM , MTYPE. So, in
this case, to forward the message, all we need to do is change the destination (“TO =
KNGPE”) and issue the CreateMessage statement. A new message is created with
all the other fields.

Finally, we use the MoveMessage statement to move the original message from the
Intray (where we found it) to the Archive Folder so that we do not detect it again when
the script loops. See the Command Reference for details on the MoveMessage
statement.

The upside of the FindMessage command is that you can actually search the body of
the message for a string, and trigger the forwarding or storing event on that. However,
this takes coordination to ensure that the message originator puts in the string, and the
Opscript is set up to look for it.

See Script Example #4 for a more filled in view on how this set of OSL commands
could work.

6/11/2012

24

Outpost Scripting v2.6 Users Guide

3.11 Tutorial #11 — File Manipulation

We already touched on a couple of File commands that you may find useful. You could
work in OSL a long time without ever needing to use any of these commands. However, file
commands are an excellent way to bring a real world interaction to the entire Outpost
messaging environment.

NOTE: Before proceeding, I recommend reading the Command Reference on these statements:

FindFile, NextFile, EXISTS, GetFileName, MoveFile, and Delete.
Getting Started

Most of the file functions are self-explanatory. However, there is one command set that
warrants some discussion: FindFile and NextFile. Here’s an example:

SCRIPT
VAR FNAME as string
VAR NAMEONLY as string

BEGIN

“ Set up the mask to look for any file that matches this pattern.
FindFile(*“c:\data\wx*_txt’)

“ Get the Ffirst file 1T one is there.
FNAME = NextFile(0)

“ The best check is to see if the file exists

WHILE Exists(FNAME) = TRUE

“ if the file exists, create a message and post it
BBS="“K6FB-2""; FROM=*“KN6PE”; TO=*“ALLCTY”; MTYPE = “BULLETIN”

Put the file name (not entire path) in the subject line as well
NAMEONLY = GetFileName(FNAME)
SUBJECT=“WX Bulletin: ” & NAMEONLY
MESSAGE=READF I LE(FNAME)

CREATEMESSAGE

We could either delete the file or move it. For this example,
“ we will move it so we don’t detect it again
MOVEFILE(FNAME, “c:\data\sent’)

Finally, get the next file name and repeat this all over again
FNAME = NextFile(0)

Print(*-—-—————————)
ENDWHILE

END

The Fi ndFi | e and Next Fi | e statements are another pair of statements that work
together. They allow you to search for one or more files that match a certain pattern (File
Mask) of file names that may exist in a directory. For instance, suppose the following files
are in the directory c:\data:

WXO080604MONTEREY . TXT

WXO080810PACIFICA.TXT

All the files begin with the 2 characters “WX”, are followed with the 6 digit date when it was
created, and the region that it covers. Because you may not know when files will show up,
you need some way to check for the file names so you can post them as bulletins to your

6/11/2012

25

Outpost Scripting v2.6 Users Guide

communications team. What you do know is that all file names start with “WX”” and end with
a “.TXT”. Now you have the makings for defining a file mask.

For Opscripts to find these files, you set up the mask as follows: “c:\data\wx>.txt”.
This means:

(i) You are looking at files in the c - \data\ directory

(i) Search for all files that start with the characters “WX”.
(iii) and, match the “.tXt” atthe end.

(iv) The asterisk (*) means match everything else in between.

Because we are putting this all within a WHILE loop, the script will find each file name,
assign it to FNAME, create a message, move the file to a “sent” subdirectory, and then get
the next file name. This loop will repeat (2 times) until all file matches are processed.

With the 2 files in ¢z \data, here’s what is produced when this script is run:

STARTING SCRIPT EXECUTION

Reading file c:\data\WX080706Pacifica.txt...

Initializing a new message

Saved new message ID=55

File "c:\data\Wx080706Pacifica.txt” moved to *c:\data\sent"

Reading file c:\data\WX080710Monterey.txt. ..

Initializing a new message

Saved new message 1D=56

File "c:\data\Wx080710Monterey.txt" moved to 'c:\data\sent"

END OF SCRIPT EXECUTION

A quick check of the Outpost Out Tray shows these 2 messages are ready to be sent. Note
the File Name is included as part of the Subject.

i

File Edit Setup Tools Actions Help

Newl Openl Deletel Printl Sendeeceivel
Folder List Out Tray
e . g
FMEPE ‘wETDM FKEFB-2 HEw Check Messzage Mone 40
B KMEPE ALLCTY KEFB-2 ‘Wi Bulletin: "w>080706Pacifica.tst MNone Krn
B KMEPE ALLCTY KEFB-2 ‘Wi Bulletin: "w>080710Monterey bt None 105

The Next Fi | e function returns a file with its full directory path if there are more to match.
If there are no more files, then it returns a blank string. This then fails the EX1STS test in
the Whi e Statement.

The Get Fi | eName function takes a fully qualified file name (path and all), and returns the
file name only. This is useful when you want to append the file name to something without
the path.

The MoveFi | e function moves the file from the c:\data directory to the
c:\data\sent directory. See the command reference for more details.

Instead of moving the file, we could have used the Del et e (Fname) function to delete the
file instead if we didn’t care to keep it around.

All of the above script code could be put within a bigger unconditional loop (LOOP...
ENDLOOP) that would frequently check if new files show up. See Script Example #3 for
how this would look.

6/11/2012

26

Outpost Scripting v2.6 Users Guide

3.12 Tutorial #12 — Interacting with the outside world
There are a couple of ways that Opscripts interacts with the outside world. We have already
experimented with some of them, such as the Pri nt function. However, there are others
that can be used in ways still yet to be discovered. They break down in the following
categories:

Audio Notifications

OSL supports two types of sound producing statements:

Beep. Itdoes just as it says. This statement causes the PC to beep.

Pl ay(wav_fil e). This command plays the named wav file. If a sound card is not
present, then the PC will Beep instead.

You can do more than just playing “tada.wav” or some of the other .wav files that come
with Windows. Using the PC’s Sound Recorder, you could record yourself saying
something like: “Hey! Change the frequency to 145.050, then press resume!” If you are
operating in a noisy environment, turn the volume up!

External Program Control

OSL also allows you to run programs either synchronously or asynchronously.

Run(program nane). This function causes the named program to run. Opscripts
will not wait for it to complete, and will continue on with the rest of the script.

RunW pr ogram nane) . Run with Wait. This function causes the named program
to run. In this case, Opscripts will wait for the called program to exit before continuing
with the next statement.

6/11/2012

27

Outpost Scripting v2.6 Users Guide

3.13 Tutorial #13 — Outpost-initiated scripts
You can automatically run a script from Outpost for the following 3 situations:

1.

Run a script when starting Outpost. There could be tasks that can be wrapped into a
script and processed prior to more extensive Outpost processing. This is set up in
Outpost and triggered immediately on running Outpost.

Run a script when exiting Outpost. Similarly, there could be some cleanup activities or
programs to run as Outpost is shutting down.

Run a script when Outpost initiates a Send/Receive session. There may be times when
the standard Outpost Send/Receive process is not sufficient and a custom script needs to
run in its place. Outpost now lets the user select how the Send/Receive process works,
either run the current native Outpost Send/Receive process, or run a user-defined script.

This is set up in Outpost from the Tools > Script Settings... menu.

Getting Started

The following is an example of a Startup Script.

SCRIPT
“ Description: Startup script in the EOC; sends a message to
“ county EOC letting them know that we are on line.

BEGIN

BBS=“K6FB-2""

MYCALL=*“KNG6PE”’

TACCALL=**CUPEOC”’

FROM=*“CUPEOC”

TO=**XSCEQOC”’

SUBJECT="“CUPERTINO EOC Radio Room is Staffed”
MTYPE=*Private”

MESSAGE=“This is an auto-generated message. 73, Jim”
CREATEMESSAGE

Sendreceive

Finally, terminate Opscripts and wait for the next run request
EXIT

END

The Opscripts command that is needed whenever initiating a script from Outpost is the EXI T
command.

Exi t. This command causes the Opscripts Program to exit.

This command ensures that there is no left-over copy of Opscripts running prior to the next
time that Outpost attempts to run a script. Here are some considerations when using EXI T.

1.

When Opscripts encounters an EXI T command, it does just that... immediately
terminates the Opscripts program. It will not prompt to save work or give you any other
warning.

When developing a script using the EXI T command, leave this command commented
out while developing and debugging the script. It will save you the time and frustration
of re-entering your script when an inadvertent EXI T is encountered.

Be sure your script is saved immediately after you uncomment this command.

6/11/2012

28

Outpost Scripting v2.6 Users Guide

4 Sample Scripts

The following are examples on how OSL can be used to automate different types of Outpost tasks.

41

Example 1 — Poll 3 different BBSs

One common request is for Outpost to check one BBS, then another. Today, the user needs
to make the change manually in Outpost. This approach can be expanded to any number of
BBSs provided they are on the same frequency. See the website for other examples and
methods for doing the same thing.

SCRIPT
“ Description: Loop on 3 BBSs. This script will continuously loop
“ on these 3 BBSs. To exit the loop, press the STOP
“ button on Run Monitor Form.
“ Author: Jim KN6PE
“ Revision: 08/05/08 Original
“ 11/15/10 Updated
BEGIN
TNC = ““GARAGE-TNC” “ use this TNC for all runs
LOOP
Print(CRLF & “Checking K6FB-2 BBS as KNG6PE..””)
MYCALL = “KN6PE” “ check for my personal messages
BBS = “K6FB-2~ “ check the Las Cumbres ARC PBBS
RETRIEVE = “PB” “retrieve Private and Bulletins
SENDRECEIVE
Print(crif & “Checking K6FB-2 BBS as K6KP..””)
MYCALL = “K6KP” “ check for any messages to CARES
BBS = “K6FB-2~ “ check the Las Cumbres ARC PBBS
RETRIEVE = “P” “‘retrieve Private messages only
SENDRECEIVE
Print(crif & “Checking W6SJC-1 BBS as KN6PE..””)
MYCALL = “KN6PE” “ check for my personal messages
BBS = “W6SJC-1~ “ check the San Jose RACES F6FBB BBS
RETRIEVE = “PF” “retrieve Private and Filtered msgs
FILTER = “RACES:SCCNOR:SCCSOU”
SENDRECEIVE
PAUSE (600) “ Pause 10 minutes..
ENDLOOP “ and, repeat
END

6/11/2012

29

Outpost Scripting v2.6

4.2

Example 2 — Periodically send a Health & Welfare message

Users Guide

The user has this instance of Outpost operating remotely, and wants to know that it is still

running.

SCRIPT

Description: Post a H&W message to the BBS every 4 hours
“ Author: Jim KN6PE
“ Revision: 08705708 Original

* kK * kK hk

* kK

B L s i s

BEGIN

BBS = ““K6FB-2""

TNC = “GARAGE-TNC”

MYCALL = ““KN6PE”

RETRIEVE = “PB” “‘retrieve Private and Bulletins

LOOP

Print(crlf & “Creating and sending a H&W message..””)
FROM = “KN6PE”

TO = “WETDM”

SUBJECT = “H&W Check Message”

MESSAGE = “Allan, system is still running. 73, Jim”
MTYPE = “Private”

CREATEMESSAGE

SENDRECEIVE

PAUSE (60*60*12) “ Pause for 12 hours (12*60*60=14400 seconds)

ENDLOOP

END

6/11/2012

30

Outpost Scripting v2.6 Users Guide

4.3

Example 3 — Detect and send a text file

This script allows a user who captures weather bulletins off of the internet to forward to the
local packet community. He figured out a way to get the bulletin down to his PC (not shown
here).

Description: Detect and forward weather bulletins. The WX File
is written to a directory on the PC with the
format WXyymmddhhmmss_.TXT (example). Loop
continuously on the check

" Author: Jim KN6PE

" Revision: 08/05/08: Original

Var FNAME as string " variable holding the file name and path
Var NAMEONLY as string " variable holding the file name only
BEGIN

" Define the BBS that we will use
BBS = ""K6FB-2""

TNC = "GARAGE-TNC"

MYCALL = ""KN6PE"

RETRIEVE = "PF" " retrieve Private and selective bulletins

FILTER = ""wx" " for Filtered, only get WX messages

LOOP

" Check if one or more files matching this mask exist
FindFile('c:\data\Wx*_txt") * reload the file mask

" Get the first file. Fname will contain a file name if one exists
FNAME = NextFile(0)

Check if a file exists
WHILE Exists(FNAME) = TRUE

ifT the file exists, create a message and post it
BBS=""K6FB-2"; FROM="KN6PE'"; TO="ALLCTY'; MTYPE = "BULLETIN"

Put the file name (not entire path) in the subject line as well
NAMEONLY = GetFileName(FNAME)
SUBJECT="WX Bulletin: " & NAMEONLY
MESSAGE=READF I LE (FNAME)
CREATEMESSAGE

Could delete or move it; lets move it so we don"t detect it again
MOVEFILE(FNAME, "c:\data\sent')

Finally, get the next file name and repeat this all over again
FNAME = NextFile(0)

Add a line separator to the output for readability

Print(""--———————— ™)
ENDWHILE
SENDRECEIVE " do this regardless if we found a file
PAUSE (300) " Pause 5 minutes (5*60=300) between checks
ENDLOOP

END

6/11/2012

31

Outpost Scripting v2.6 Users Guide

4.4 Example 4 —Forwarding Outpost messages
This script lets the user look for a specific message received by Outpost and forward them to

a different BBS.
SCRIPT
" Description: Detect incoming Outpost messages and forward
" to a different BBS. For this script, check K6FB-2
" for specific incoming messages addressed to KN6PE
" with a specific subject, and forward it to my
" email address via WINLINK.
" Author: Jim KN6PE
" Revision: 08/17/08 Original
VAR MsglD AS NUMBER * holds the message ID for found msgs
VAR counter AS NUMBER " counts the number of matched msgs
BEGIN
LOOP

" Set to check K6FB-2 for incoming private messages to me
counter = 0
BBS = "K6FB-2"; TNC = "GARAGE-TNC"; MYCALL = "KN6PE"
RETRIEVE = "'P"
SendReceive

" 1 only care about certain messages. Check the Intray (1), the
" Subject Field (4), for a subject that starts with the characters
" "NOAA", then has anything after it "*"

FindMessage(1, 4, "NOAA*™)

Get the First message ID (Outpost internal value) if one exists
MsgID = NextMessage(0)

WHILE MsgID > O " One exists if greater than 0O

Yes, we have one! Create the message with this file content
Print(*’Forwarding message with Subject=" & subject)

counter = counter + 1
BBS "SANDIEGO" " must be defined in Outpost
TNC “"SANDIEGO-TELNET"" " must be defined in Outpost
TO = "SMTP:kn6pe@arrl_net"

For the message, add a line up front to the message text
MESSAGE = "'OSL-forwarded from K6FB-2" & CRLF & MESSAGE

CREATEMESSAGE

MoveMessage(MsglID, 4) " Once sent, move to Archive

MsgID = NextMessage(0) " get the next match
ENDWHILE

IF counter > 0 then

SENDRECEIVE " send via WINLINK

Counter = 0O " and reset the counter to O
ENDIF

PAUSE (600) " Pause 10 minutes (10*60=600) between checks
ENDLOOP

END

6/11/2012

32

Outpost Scripting v2.6

Users Guide

5 Command Reference

51 Summary

General Functionsand Statements

Beep Statement Plays a beep on the PC speaker
Begin Statement Required; Marks the beginning of the script
Clear Statement Clears the runtime monitor display
End Statement Required; Marks the end of the script
Exit Statement Causes Opscripts.exe to terminate when encountered
If... Then... Else | Statements Conditional check
Loop... EndLoop | Statements Unconditional loop
OnError Statement Determines how to proceed in the event an error occurs
Script Statement Required; Identifies this file as a script
SendOnly Statement Initiates an Outpost Send Only session
SendReceive Statement Initiates an Outpost Send/Receive session
Var Statement Defines a user variable
While.. EndWhile | Statements Conditional loop
Pause() Function Causes the script to pause
Play() Function Plays a .wav file
Print() Function Prints a string of text to the Runtime Monitor window
Run() Function Run a program, does not wait for it to complete
Runw() Function Run a program, waits for it to complete

File Functions
Delete() Function Deletes a file
Exists() Function Tests if a file exists
FindFile() Function Sets up to find matches to a file mask
GetFileName() Function Returns the file name only from a full path file string
MoveFile() Function Moves a file to a different directory
NextFile() Function Gets the next file that matches a file mask
ReadFile() Function Read a file content
ValidFileName() | Function Creates a valid file name from path and name elements
WriteFile() Function Writes text to a named file

String Functions
FindWord() Function Sets up to find matches to a comma-delimited string
NextWord() Function Gets the next word in a comma-delimited string
Len() Function Returns the length of a string

M essage Statementsand System Variables

CreateMessage Statement Creates an Outpost message based on parameters
FindMessage() Function Searches Outpost for a message

MoveMessage() Function Moves an Outpost message to a different folder
NextMessage() Function Gets the next Outpost message that matches the search
BBS System Variable | Holds the BBS name

FROM System Variable | Holds the FROM address

TO System Variable | Holds the TO address

SUBJECT System Variable | Holds the Subject of the message

MESSAGE System Variable | Holds the body of the message

MTYPE System Variable | Holds the message type

BBSMSGNO System Variable | Holds the BBS message number for received messages
RECEIPTS System Variable | Holds the Receipt flags for outgoing messages

6/11/2012

33

Outpost Scripting v2.6

Users Guide

LMI

System Variable

Holds the Local Msg ID for received messages

DATETIME

System Variable

Holds the Date Time string for received messages

Send/Receive Statementsand System Variables

SendOnly Statement Initiates an Outpost Send Only Session
SendReceive Statement Initiates an Outpost Send/Receive Session
Expire() Function Sets up a bulletin for deletion from the BBS
BBS System Variable | Holds the BBS name

TNC System Variable | Holds the TNC name

MYCALL System Variable | Holds the Station Identifier (Call Sign)
TACCALL System Variable | Holds the Tactical Call

RETRIEVE System Variable | Holds what message types are to be retrieved
FILTER System Variable | Holds the categories for a Filter Retrieve
SRNOTE System Variable | Holds the results of a Send/Receive Session

Other System Variables

TRUE System Variable | Value against which conditions can be checked
FALSE System Variable | Value against which conditions can be checked

ON System Variable | Value that can be used to set items

OFF System Variable | Value that can be used to set items

CRLF System Variable | Value that causes a carriage return/Line feed on output

5.2 Special Characters

‘* (single quote)

Description

The single quote starts the beginning of a comment. Everything after the single quote is part
of the comment up until the end of the line.

Syntax
¢ <comment>

Example

“Comments can begin as the first character

X = x+ 1

Notes

1. All comments are preceded with a single quotation mark.

or after a statement

+-/* Description
Arithmetic operators: OSL supports the standard arithmetic operations. All precedence rules
apply.
Syntax
<var> = [var | number] <operand> [var | number]
Example
X =x+1
X=x*((B-y)/74
Notes
1. When an expression has a mix of operators, the precedence of execution is multiple
and division first, then addition and subtraction.
2. Expressions in parenthesis are always executed first.
3. Space are optional when formatting an expression.
; (semicolon) Description

Command line continuation. Placing a semicolon at the end of a line allows you to add
another command to the same line.

Example
X=x+1; y =y

Notes

1. Care should be taken with this feature since it may contribute to readability problems
and debugging your script.

-1

BBS = *““K6FB-2; TNC = *““GARAGE-TNC”

6/11/2012

34

Outpost Scripting v2.6

Users Guide

Description
Relationship operators. These are operators are used as part of conditional tests made with
WHILE..ENDWHILE and 1F..THEN.. ELSE statements.

Example
#1 IF X > 5 THEN
#2 WHILE Y <= 12

Notes

1. The following relationship operators are defined:
< less than
<= less than or equal to
> greater than
>= greater than or equal to
= equal to

5.3 Command Reference
Assignments Description

Assignments are statements that assign a value, variable, result of a function call, or arithmetic
operation to another variable.

Syntax
<var> = [number | string | <var> | expression | function]

Examples

#1. Temp = “Weather.txt”
#2.Result = X / (Y+5)
#3.Fname = NEXTFILE(O)

Notes

1. The rules of operational precedence apply to all arithmetic calculations.

2. There is limited type checking; use caution when mixing strings and numbers in an
arithmetic expression.

BBS Type

System Variable

Description

Holds the Friendly Name of the BBS. This variable is used by the CREATEMESSAGE and

SENDRECE I VE statements

Syntax

BBS = <bbs_name> Default = blank

Example

BBS = *“LCARC Pathl” " LCARC"s K6FB-2 BBS via AAGBWK-7

Print(“Checking BBS “ & BBS)

SendReceive

Notes

1. The value that you assign to the BBS variable is the Friendly name of a BBS that is
already defined in Outpost. Connect Names can also be used, but in the event of
multiple BBS Friendly Name entries with the same Connect Name, the 1% BBS entry
will be used (#817, #858, 16-May-10).

2. Ifthis BBS is not set up in Outpost, at the time the Send/Receive session is attempted,
Outpost will generate the message: “Either the Station ID, BBS, or TNC is not
selected...”. This message may not pop to the front; you may need to minimize the
Script window to see it.

BBSMSGNO Type
System Variable
Description

Holds the BBS message number that was associated with the message retrieved from the BBS.

6/11/2012

35

Outpost Scripting v2.6

Users Guide

Example
Expire(BBSMSGNO)
SendReceive

Notes
1. This field is for display purposes only after retrieving a message.

Beep

Description
Causes the PC to Beep

Syntax
Beep

Example

IF x > 5 THEN
BEEP

ENDIF

Notes
1. Also, see the PLAY statement as an alternate audible annunciation option.

Begin

Description
Defines the beginning of the OSL Script statements.

Syntax
BEGIN

Example
SCRI PT
VAR x AS NUMBER
BEG N
X =5
Print(“The value of *’Xx”” is 7 & X)
END

Notes

1. This statement acts as a boundary between all variable declarations and the first script
statement.

2. After pressing NEW, this statement is 1 of 3 statements that are automatically inserted in
the new script editing window.

3. Also, see the SCRIPT, END statements.

Clear

Description
Clears the runtime monitor display. Used primarily for display formatting

Syntax
Clear

Example
Loop

Print(“polling BBS ” & BBS)
SendReceive
Pause(5)
Clear
Endloop

Notes

CreateMessage

Description
Creates a message based on the settings of the message-reserved variables, and writes the
message to the Outpost message database.

Syntax
CreateMessage
Example
BBS = “K6FB-2”
FROM= “KNG6PE”
TO= “K6TEN”

SUBJECT= “Repeater Update”

6/11/2012

36

Outpost Scripting v2.6

Users Guide

MESSAGE = ReadFile(RepeaterMessage)
MTYPE = “PRIVATE”
CreateMessage

Notes

1. All message reserved variables must be set prior to executing this statement.

2. Message-reserved variables are: BBS, FROM, TO, SUBJECT, MESSAGE,
MTYPE

3. A valid message is written to the Outpost message database and is set for the next
send/receive session.

4. Also, see: BBS, TNC, MYCALL, TACCALL, RETRIEVE, FILTER

CRLF

Type
System Predefined Variable

Description

Contains the 2 characters for Carriage Return and Line Feed. It is used to insert a Carriage
Return / Line Feed (same as pressing the Enter Key) in a string so that a single string can
display multiple lines.

Example
Msg = “Hi Cap,” & CRLF & “Hope all is well.” & CRLF & “73, Jim”

Notes
1. The CRLF is a variable and not part of the string that you define. It is appended to other
portions of the string with an “&”.

DATETIME

Type
System Variable

Description
Holds the retrieved message Date time as listed on the BBS and the Outpost message listing.

Example
Print(DATETIME)

Notes
1. This field is for display purposes after retrieving a message. There is no effect to set this
field.

Delete()

Description
Deletes the named file.

Syntax
DELETE(file_name)

Return
none

Example

#1. Delete(“weather-report.txt™)

#2. FName = “weather-report.txt”
Delete(FName)

Notes
1. In the event the file does not exist, is open, or is write-protected, the file will not be
deleted and an error message will be displayed on the Runtime Monitor.

End

Description
The last statement in the script, Required.

Syntax
END

Example
SCRI PT
BEG N
Print(“Hello World!”)
END

Notes

6/11/2012

37

Outpost Scripting v2.6

Users Guide

1. This statement must be the last statement in the script.

2. After pressing “NEW?, this statement is 1 of 3 statements that are automatically inserted
in the new script editing window.

3. Also, see the SCRIPT, BEGIN statements.

Exists()

Description
Tests whether the named file exists.

Syntax
EXISTS(file_name)

Return
Number: O - FALSE
1 — TRUE

Example
#1. IT EXISTS(“weather-report.txt”) = TRUE then

#2. FName = “weather-report.txt”
Result = Exists(FName)
IF Result = FALSE THEN

Notes

1. The function will return either a 0 or 1 depending on the outcome.

2. When using with the IF statement (1* example), use the System Variables TRUE or
FALSE for the test.

Exit

Description
Terminate Opscripts.exe when encountered (#748)

Syntax
EXIT

Example
SCRIPT
BEGIN
Print(*‘Hello World!”)
EXIT ‘ terminate Opscripts
END

Notes

1. This command is used whenever you want to run a script from Outpost and terminate
scripting when done.

2. Save your work before running with this command. It will exit without prompting to
save your work.

Expire()

Description
Delete a bulletin message that belongs to you.

Syntax
EXPIRE(O | Bbs_Msg_ID)

Example
FindMessage(1, 4, "*WX ADVISORY*'") ' 1=Intray, 4=Subj Field of Bull name
MsglID = NextMessage(0)

WHILE MsglID > O ' One exists if greater than 0
IF FROM = "KN6PE'" then ' is it from me? If so, its my Bulletin
Print(*'Deleting " & subject)
EXPIRE(O) ' set it up to delete next S/R cycle
movemessage(MsglD,4) ¢ move the message to Archive Folder
ENDIF

MsglID = NextMessage(0) ' get the next match, if any
ENDWHILE

Notes

1. Use a “0” with the Expire command to use the BBS message number associated with the
last message loaded by the NextMessage function.

2. Inthe above example, suppose you periodically post a bulletin message that contains the

6/11/2012

38

Outpost Scripting v2.6

Users Guide

subject line phrase “WX ADVISORY”. This lets you find the message again so we can
delete it when a new update comes along.

3. The user needs to test to determine if the message being retrieved is in fact a bulletin that
(i) exists, and (ii) the user originally posted. Only the bulletin owner can delete a posted
bulletin.

FILTER

Description
System Predefined Variable. Holds the string of concatenated filter values that will be used
during a Filter Retrieval.

Syntax
Default = blank

Example
#1. RETRIEVE = “PF”
FILTER = “QST”
#2.FILTER = “LINUX:KEPS:SOCTY”

Notes

1. FILTER must be set if the “F”* Filter Retrieve option is set.
2. All filters must be separated with colons 2.

3. The entire Fi I'ter assignment enclosed in quotations.
4

Any number of filters can be assigned to the FILTER variable.

FindFile()

Description
Searches for and collects all file names that match a particular string pattern.

Syntax

FINDFILE(pattern)

pattern: some or all of the file name to match; use “*” to fill. For instance
c:\data\WX*._txt : finds files that start with WX and end with . TXT
o : finds all files in the current directory

Example

SCRIPT

VAR NameOnly as string
VAR FullName as string
VAR ctr as number

BEGIN
ctr = 0
FI NDFI LE(“c:\data*. txt")
FullName = NextFil e(0)

While Exists(FullName) = TRUE
NameOnly = GetFileName(Ful IName)

Print(FullName & “ -- “ & NameOnly)
FullName = Next Fi |l e(0)
ctr = ctr + 1

ENDWHILE

Print(“Files Found: “ & ctr)
END

Notes

1. This function initializes the File Mask function allowing the NextFile function to
retrieve each file that matches the mask.

2. Each file returned will contain the equivalent amount of the path as was set up. For

instance:

If FindFi le contains... then NextFi les will include

scripts\test*.txt script\full_file_name

c:\data*.* c:\data\full_file_name

On entering another file mask, the retrieval is reset.
Use the “*” to match any character(s) between characters
5. See the NextFile Function

W

6/11/2012

39

Outpost Scripting v2.6

Users Guide

FindMessage()

Description
Searches all Outpost messages that match a particular string pattern.

Syntax
FINDMESSAGE(<folder>, <field>, <pattern>)
folder: A number corresponding to an Outpost folder to search.
Valid numbers are:
1. InTray
2. Out Tray
3. Sent Folder
4. Archive Folder
5. Draft Folder
6. Deleted Folder
field: A number corresponding to an Outpost Message field to search.
Valid numbers are:
1. BBS
2. FROM
3. TO
4. SUBIJECT
5. MESSAGE
pattern: The string pattern to match. Wildcard use (KN6*) is allowed.
Return
none
Example
SCRIPT

VAR MsglID as number
VAR ctr as number

BEGIN
ctr = 0
Fi ndMessage(1, 4, " NOAA*")
Msgl D = Next Message(0)

while msgid > 0
Print(""Found Msg: " & SUBJECT)
Msgl D = Next Message(0)
ctr = ctr + 1

endwhile

Print(*"Messages found: " & ctr)
END

Notes
1. This function initializes the Message Mask function allowing the NextMessage
function to retrieve each message that matches the mask. . For instance:

If FindMessage contains. .. then NextMessage will include
CUpP* CUPertino, CUPO43..
* <anything>

2. On entering another message mask, the retrieval is reset.

3. Use the “*” to match any character(s) between characters

4. See the NextMessage Function

5. The pattern match is not case sensitive, meaning that a mask of “repeater” will match to
a string “REPEATER”.

FindWord() Description

Sets up to return the individual words found within a comma-delimited string.

Syntax

FINDWORD(<string>)

<string>: string contains individual words that need to be retrieved
Example

SCRIPT

6/11/2012

40

Outpost Scripting v2.6

Users Guide

VAR ListOfBBS as string
VAR SingleBBS as string
VAR ctr as number

BEGIN
ctr = 0
ListOfBBS = “K6FB-1, W6XSC-1, K6TEN, SANDIEGO”
FI NDWORD(ListofBBS)
SingleBBS = Next Wor d(0)

While LEN(SingleBBS) > 0
Print(“Next BBS name is “ & SingleBBS)
SingleBBS = Next Wor d(0)
ctr = ctr + 1

ENDWHILE
Print(“Number of BBSs Found: “ & ctr)
END
Notes

1. This function initializes the String Search function allowing the NextWord function to
retrieve each word from the array of comma-delimited words.

2. On entering another Word search, the retrieval is reset.

3. The list of strings must be in a set a quotes. Individuals words must be separated by
commas.

4. See the NextWord Function

FROM

Description
System Predefined Variable. Holds the call sign or tactical calls for the message From field.

Syntax
FROM = “<call_sign>" Default = blank

Example
From = “KN6PE”

Notes
1. The FROM assignment is enclosed in quotations.

GetFileName()

Description
Returns the file name portion of a string that includes the file name and path

Syntax
<var> = GetFileName(<full_name>)

Example
SCRIPT
Var FullName as String
Var FileName as String

BEGIN

FullName = “c:\data\Weather.txt”

FileName = GetFileName(FulIName) returns “Weather.txt”
Print(FullName & “ ” & FileName)

END

Notes

1. This command is useful if you intend to create messages with the subject name
embedded in it

If... Then
[Else]
Endif

Description
Conditionally executes a block of statements dependent on the state of the condition.

Syntax
IF <condition> THEN
<statements>
[ELSE
<statements>]
ENDIF

Example
#1. 1T x > 5 THEN

6/11/2012

41

Outpost Scripting v2.6

Users Guide

X =x+1
ENDIF

#2. 1f x > 5 THEN
Print(x)
ELSE
X =x+1
ENDIF

Notes
1. The ELSE statement is optional and not required
2. See Also: WHILE, LOOP

LEN()

Description
Returns the length of a string (number of characters)

Syntax

<result> = LEN(<string>)

result : integer, indicates the number of characters in the string
string : the string to be tested

Example 1
Si ngl eBBS
WordLen =

= “K6FB-1~
LEN(Si ngl eBBS)

Example 2
Si ngl eBBS = “K6FB-1""

While LEN(SingleBBS) > 0

Notes

LMI

Description
System Predefined Variable. Holds the Local Message ID (LMI) if enabled in Outpost for
incoming messages.

Syntax
LMI = “[blank | <LMI value>” Default = depends on Outpost setting

Example
No example

Notes

1. This field is for display purposes after retrieving a message. There is no effect to set this
field.

2. See the Outpost Users Guide for a description of LMI.

Loop...
EndLoop

Description
Continuously loops on a block of statements

Syntax

LOOP
<statements>

ENDLOOP

Example

LOOP
SendReceive
Pause (300)

ENDLOOP

Notes

1. The only way to exit this loop is to press the “STOP” button on the Runtime control
form.

2. See Also: 1F, WHILE

MESSAGE

Description
System Predefined Variable. Holds the body of the message.

6/11/2012

42

Outpost Scripting v2.6

Users Guide

Syntax
MESSAGE = “<message text>" Default = blank

Example
#1.Message= “Hi Vince, All is still OK here. 73, Jim”
#2. Message= ReadFile(“Message.txt™)

Notes

1. Use a string assigned to MESSAGE for short messages.

2. Use the ReadFile() function to read in the contents of a file to set the message. See
Script example #3.

MoveFile()

Description
Moves the named file from one location to another.

Syntax
MOVEFILE(<path\file_name>, <dest path>)
path\file_name : The current path and file name of the file to be moved

dest_path = The Path only of where the file will be moved. Do not include any
trailing back slashes

Return
none

Example
#1. MoveFile(“c:\data\wx.txt”, “c:\data\sent”)
#2. MoveFile(InName, ‘“c:\data\sent”)

Notes

1. Ifthe source file is not found, a runtime error will occur and the script will stop. It is
recommended that you check for the presence of the file with the EXists() function
prior to moving or reading a file.

MoveMessage()

Description
Moves a message from one Outpost folder to another.

Syntax

MOVEMESSAGE(<msg_id>, <folder_no>)

Msg_id: Outpost message pointer. Usually returned by the NextMessage
statement

folder_no: is defined as:

InTray

Out Tray

Sent Folder

Archive Folder

Draft Folder

Deleted Folder

R o

Return
none

Example
#1. MoveMessage(MsglD, 4) message is moved to the Outpost archive folder
#2. MoveMessage(MsglD, 6) message is moved to the Outpost deleted folder

Notes

1. The Message ID is an internal Outpost identified not typically used in the normal
operation from the Outpost forms. From an OSL perspective, the Message 1D typically
comes from the NextMessage function.

2. Any folder value other than those listed above will cause and error and the script to stop.

MTYPE

Description
System Predefined Variable. Holds the message type for a message being created.

Syntax

MTYPE= “PRIVATE” | “NTS” | “BULLETIN” Default = blank
Example

#1.MTYPE = “Private”

#2.MTYPE = “NTS”

6/11/2012

43

Outpost Scripting v2.6

Users Guide

Notes

1. Only one message type can be set for each message. If more or set, the last Message
Type set will the one applied the next time the CreateMessage statement is executed.

2. Ifnot provided, MTYPE defaults to “PRIVATE”

MYCALL

Description
System Predefined Variable. Holds the value of the Call Sign that is used to initialize the
interface. This variable is used by the SendReceive statement.

Syntax
MYCALL = <call_sign> Default = blank

Example
MYCALL = ““KN6PE”

Notes
1. Ifleft blank, then Outpost will use the currently defined Call Sign as defined from
Outpost’s Setup > Identification form (#758).

NextFile()

Description
Retrieves the next file name that was previously collected by the FindFi le function

Syntax
<Var_name> = NEXTFILE(C 0)

Return
String: Next file name (only) that matches the pattern
If non-blank, valid file name
If blank (null string), no file found, or reached the end of the list

Example

SCRIPT

VAR NameOnly as string
VAR FullName as string
VAR ctr as number

BEGIN
ctr = 0
FI NDFI LE(““c:\data*. txt")
FullName = NextFil e(0)

While Exists(FullName) = TRUE
NameOnly = GetFileName(FulIName)

Print(FullName & “ -- ” & NameOnly)
FullName = Next Fil e(0)
ctr = ctr + 1

ENDWHILE

Print(“Files Found: ” & ctr)
END

Notes

1. This function retrieves the next file previously initialized by the FindFi le function.
The function returns the file name with whatever path was set up as the FindrFile()
parameter.

2. The parameter “0” is required. This is for future use.

Each time this function is called, the next file that matches the mask is returned.

4. When there are no other matches, a blank string is returned. Use the EXISTS()
Function to test whether a valid file name was returned.

W

NextMessage()

Description
Retrieves the next message ID that was previously collected by the FindMessage function.

Syntax
<Var_name> = NEXTMESSAGE(0)

Return
Integer: next file that matches the pattern
If > 0: a valid Outpost message ID

6/11/2012

44

Outpost Scripting v2.6

Users Guide

If = 0: no message found, or reached the end of the list

Example

SCRIPT

VAR MsglID as number
VAR ctr as number

BEGIN
ctr = 0
Fi ndMessage(1, 4, "NOAA*")
Msgl D = Next Message(0)

while MsgID > 0
Print("Found Msg: " & SUBJECT) “ only print the subjects
Msgl D = Next Message(0)
ctr = ctr + 1

endwhile

Print(""Messages found: " & ctr)
END

Notes

1. This function retrieves messages based on the selection criteria set up by the
FindMessage() function.

2. The Parameter “0” is required. This is for future use.

3. Each time this function is called, the next message that matches the mask is returned.

4. When there are no other matches, a value of 0 is returned. Use an 1F.. Then to test
whether there is a valid message returned.

NextWord()

Description
Retrieves either the sequentially next word or a specific word that was previously collected by
the FindWord function

Syntax

<Var_name> = NEXTWORD(<index>)

index: 0 (zero), returns the next word from the list
1 .. n, returns the indexed word from the list

Return

String: Next word name that was set up
If non-blank, valid word name
If blank (null string), no word found, or reached the end of the list

Example 1

SCRIPT

VAR SingleBBS as string
VAR ctr as number

BEGIN
ctr = 0
FI NDWORD(““K6FB-1, W6XSC-1, K6TEN, SANDIEGO™)
SingleBBS = Next Wor d(0)

While LEN(SingleBBS) > 0
Print(“Next BBS name is ” & SingleBBS)
SingleBBS = Next Wrd(0)
ctr = ctr + 1

ENDWHILE

Print(“Number of BBSs Found: ” & ctr)
END

Example 2

SCRIPT

VAR SingleBBS as string

VAR ctr as number

BEGIN
ctr = 4
FI NDWORD(“K6FB-1, W6XSC-1, K6TEN, SANDIEGO”)
SingleBBS = NextWord(ctr)

While ctr > 0

6/11/2012

45

Outpost Scripting v2.6

Users Guide

Print(*‘Next BBS name is ” & SingleBBS)
ctr = ctr - 1
SingleBBS = NextWord(ctr)
ENDWHILE
END

Notes

1. This function retrieves the next word previously initialized by the FindWord function.

2. Ifthe parameter is 0 (zero), then the next sequential word is returned..

3. Ifthe parameter is > 0, then the word that is indexed by the parameter is returned.

4. A parameter is less than 0 or greater than the count of the number of words will returned
a blank string.

5. For sequential (0) calls, each time this function is called, the next word is returned. The
original string is not affected.

6. When there are no other matches, a blank string is returned. Use the LEN() Function to
test whether a string with any length was returned.

ON, OFF Description
System Predefined Variable. CONSTANTS
Notes
1. Can be used as a setting and for checking. ON=1, OFF =0
OnError Description
Sets how Opscripts will handle specific types of errors
Syntax
ONERROR [STOP | PAUSE | CONTINUE] Default=STOP
Example
ONERROR STOP
ONERROR CONTINUE “ don’t worry on an error
DELETE(fname)
Notes
1. Setting a STOP condition will cause the script to report the error on the Runtime form,
and stop execution of the script.
2. Setting a PAUSE condition will pop up a box telling the user to either press STOP to
stop processing the script, or RESUME to continue
3. Setting a CONTINUE condition will indicate on the Runtime form that an error
occurred, and we are continuing anyway.
4. ONERROR is used to handle the following situations:
= Divide by zero
= RUN(), RUNW(): Running a program, and the program is not found
= DELETE(): deleting a file, but it does not get deleted (could be read-only, or
opened to another program)
= MOVEFILE(): Moving a file, but it the destination directory does not exist
= MOVEFILE(): Moving a file, but it the source file does not exist
= READFILE(): Reading a file, but it the file does not exist
= WRITEFILE(): Creating a file, but it did not happen (could be read-only, or
opened to another program)
= FINDMESSAGE)(): the Folder number is not between 1 and 6 (In tray thru
Deleted folder). If the CONTINUE option is set, the Folder value is overridden to
a value of “1” (In Tray), and processing continues.
= FINDMESSAGE)(): the Field number is not between 1 and 5 (BBS thru
MESSAGE) If the CONTINUE option is set, the Field value is overridden to a
value of “1” (BBS), and processing continues.
5. Once an ONERROR condition is set, all errors after that point will be processed with
that setting that until a different ONERROR condition is set.
Pause() Description

Causes the script to pause.

Syntax
PAUSE(seconds)

Example
#1. pause(60) Pauses for 60 seconds

#2. pvalue = 60

6/11/2012

46

Outpost Scripting v2.6

Users Gui

de

Pause(pvalue) Pauses for 60 seconds
#3. pause(0) Script stops, waits for user interaction
Notes

1. Any value greater than zero will cause the script to pause for the number of seconds
indicated. Once this statement is called, the script pauses and the time remaining will
count down and be displayed in the lower right portion of the status bar.

2. A value of “0” will cause the script to pause, and requires the user to press the Resume
button on the Runtime Monitor window. This may be useful when there is something
that the user needs to do prior to letting the script proceed.

Play() Description
Causes the script to play the named .wav file.
Syntax
PLAY(wav_file_name)
Example
#1. Play(“tada.wav’™)
#2.WavName = “tada.wav”
Play(WavName) same, with string variable
Notes
4. The file must be locatable either by a fully qualified path or by the system path
statement.
5. Inthe event the file is not found or there is no sound card on your PC, the PC will sound
a“beep.”
Print() Description
Prints a string of text to the Runtime Monitor window.
Syntax
PRINT(<text_string>)
Example
#1. Print(15) prints the number 15
#2. x = 15 set “x” to 15
Print(x) print “x”; same result as above
#3. Print(**Starting Process’) printa string
#.x =x+1 use “x” as a counter
Print(*Pass #” & X) print a string and variable
#5. FName = “Weather.txt” assign a file name to Fname
Print(“The file is ” & FName)
Notes
1. Print will output a single or concatenated string to the runtime monitor window.
2. Multiple string components can be added and separated by an ampersand “&” sign.
3. Content can be a mix of explicit string values and variables.
ReadFile() Description

Reads the content of the named file and assigns its contents to a string variable.

Syntax
<Var_name> = READFILE(file_name)

Return
String: file contents

Example
#1. x = ReadFile(*c:\data\wx.txt)
#2. MESSAGE = ReadFile(Fname)

Notes

6/11/2012

47

Outpost Scripting v2.6 Users Guide

1. In the event the file does not exist, or the path is wrong, a “file not found” message is
displayed, and the script continues to run.

RECEIPTS Description
System Predefined Variable. Holds the settings for overriding the Receipt Requests for this
message.

Syntax
RECEIPTS = “[<blank> | R [D]] ” Default = blank

Example
RECEIPTS = “RD” ‘ Request both a Delivery and Read Receipt

Notes
1. The RECEIPTS assignment is enclosed in quotations.

RETRIEVE Description
System Predefined Variable. Holds the string representation of the types of messages to be
retrieved. This variable is used by the SENDRECEIVE statement.

Syntax

RETRIEVE = <“P” “N” “B” “F”> Default="P”
Example

#1. RETRIEVE = “P” retrieve only Private messages
#2. RETRIEVE = “PNB” retrieve all message types

#3. RETRIEVE = “PF” requires Filters to be set

Notes
1. The coding for RETRIEVE is as follows:
P = Private messages
N =NTS messages
B = Bulletins
F =Filtered
2. Ifthe “F” Filter and “B” Bulletin options are both set, then only the “F” Filter option
will be used and the “B” will be ignored.
3. Ifthe “F” Filter option is set, then the Filter string must also be set. If Filter string is not
set, then the “F” Filter option is ignored.
4. RETRIEVE must be set prior to the next SendReceive statement.

Run() Description
Causes the script to run a program, and does not wait for the program to complete before
continuing with the script.

Syntax
RUN(exe_file_name)

Example
#1. Run(“‘notepad.exe™)
#2. Run(PName)

Notes

1. The executable file must be locatable either by a fully qualified path or by the system
path statement.

2. Inthe event the program does not exist, a “program not found” message is displayed,
and the script continues to run.

Runw() Description
Causes the script to run a program, and will wait for the program to complete before
proceeding with the rest of the script.

Syntax
RUNW(exe_file_name)

Return
none

Example
#1. Runw(“notepad.exe™)
#2. Runw(PName)

6/11/2012 48

Outpost Scripting v2.6

Users Guide

Notes

1. The executable file must be locatable either by a fully qualified path or by the system
path statement.

2. Inthe event the program does not exist, a “program not found” message is displayed,
and the script continues to run.

Script Description
The first OSL statement that appears in the file.
Syntax
SCRIPT
BEGIN
Print(““Hello World!™")
END
Notes
1. This must be the first OSL command in the script file.
2. After pressing NEW this is 1 of 3 statements that are automatically inserted in the new
script editing window.
3. Also, see: BEGIN, END
SRNOTE Description
System Predefined Variable. Holds any Send/Receive Notification message that may occur
from the last Send/Receive Session
Syntax
SRNOTE = “[<blank> | <Notification string>]” Default = blank
Example
IF Len(SRNOTE) > O then
Print(“Send/Receive problems, message was ” & SRNOTE)
ELSE
Print(““Last Send/Receive session was successful!™)
ENDIF
Notes
1. This field is for display purposes after retrieving a message. There is no effect to set this
field.
SendOnly Description

Initiates an Outpost send only session based on the settings of the system variables. Messages
in the out tray will be sent. No check for incoming messages is made.

Syntax
SENDONLY

Example

FROM = “KN6PE”

TO = “*K6KP”

SUBJECT = “Will miss tonight’s net”

MESSAGE = “Stuck in traffic; start the net without me” & CRLF
& “73, Jim o KNG6PE”

MTYPE = “PRIVATE”

CREATEMESSAGE

SENDONLY

Notes

1. All session-specific variables must be set prior to executing this statement.

2. Related System variables used by the SendOnly statement are: BBS, TNC,
MYCALL, TACCALL

3. Opscripts does not perform any error checking on the existence of the BBS and TNC
names entered on these variables. On a Send Only error, Outpost will report the
problem, not Opscripts.

4. Outpost must be running for this statement to work. An error will occur if Outpost is not
running.

SendReceive

Description
Initiates an Outpost send/receive session based on the settings of the system variables.

Syntax
SENDRECEIVE

6/11/2012

49

Outpost Scripting v2.6

Users Guide

Example
MYCALL = “KN6PE”
BBS = “K6FB-2”
TNC = “GARAGE-TNC”
RETRIEVE = “PB”
SENDRECEIVE

Notes

5. All session-specific variables must be set prior to executing this statement.

6. Related System variables used by the SendReceive statement are: BBS, TNC,
MYCALL, TACCALL, RETRIEVE, FILTER

7. Opscripts does not perform any error checking on the existence of the BBS and TNC
names entered on these variables. On a Send/Receive error, Outpost will report the
problem, not Opscripts.

8. Outpost must be running for this statement to work. An error will occur if Outpost is not

running.
SUBJECT Description
System Predefined Variable. Holds the subject for this message.
Syntax
SUBJECT = “<subject text>” Default = blank
Example
#1.Subject = “Status of the W6TDM Repeater”
#2.Subject = ReadFile(*“WX080608.txt™)
Notes
1. Subject Line prefixes will be inserted based on Outpost settings.
TACCALL Description
System Predefined Variable. Holds the value of the tactical call. This variable is used by the
SendReceive statement.
Syntax
TACCALL = <tac_call> Default="-"
Example
#1. TACCALL = ““CUPEOC” sets tactical call to CUPEOC
#2. TACCALL = **-~ turns off tactical call
Notes
1. TacCall is turned off by setting the variable to “~*.
TNC Description
System Predefined Variable. Holds the value of the TNC. This variable is used by the
SENDRECEIVE statement.
Syntax
TNC = <TNC_name> Default = blank
Example
TNC = “GARAGE-TNC”
Notes
1. The value that you assign to the TNC variable is the name of a TNC that is already
defined in Outpost. For instance, suppose you have a KPC3 that you define in Outpost
and give it a name of “GARAGE-TNC”. This assigned name is what you assign to the
TNC variable.
2. Ifthis TNC is not set up in Outpost, at the time the Send/Receive session is attempted,
Outpost will generate the message: “Either the Station 1D, BBS, or TNC is not
selected...”
TO Description

System Predefined Variable. Holds the call signs or tactical calls of the users for whom this
message is intended.

Syntax
TO = “<call_sign> [, 2nd_address]” Default = blank

6/11/2012

50

Outpost Scripting v2.6

Users Guide

Example

#1. To = “KN6PE”

#2. To = “KN6PE, SMTP:kn6pe@arrl._net”

#3. DistList = “K6KP, W6TDM, SMTP:kn6pe@arrl._net”
To = DistList

Notes
1. All standard address rules are in force when addressing messages to a Winlink station.

TRUE, FALSE

Description
System Predefined Variable, CONSTANTS, used as part of a conditional test.

Example
IF Exists(Fname) = TRUE then

Notes
1. TRUE and FALSE can be used to check for this case. Additional functions may be
added in the future to take advantage of this.

ValidFileName()

Description

Creates a valid full-path file name from a path and name components. This is typically used
when creating files from Outpost messages, and there may be invalid file name characters in
the Subject name.

Syntax
<Var_name> = ValidFileName(<string>)

Example
SCRIPT
Var FullName as String
Var FixedName as String

BEGIN

SUBJECT = "CUP103: c:\data\Weather report.txt"
FixedName = ValidFileName(SUBJECT)

FullName = "c:\data\" & FixedName

Print(Ful IName)

END

Notes
1. The following 9 characters work for Outpost subjects but are invalid file name
characters: SN2 <>
2. The *“:” character will be replaced with a *“;”
3. The /* ? | < >"* characters will be replaced with a “~”
4. So, in the above example, the FixedName is set to...
CUP103; c;~data~Weather report.txt

Var

Description
Declares a user-defined variable that can be subsequently assigned and manipulated

Syntax
VAR <var_name> AS [STRING | NUMBER]

Example

Script

VAR Fname as string
VAR str as string
VAR Xx as number
BEGIN

Notes

1. All user-defined variables must be defined after the SCRIPT statement and before the
BEGIN statement

2. All variables must start with a letter and may follow with any combinations of letters or
numbers. Punctuations are not allowed

3. Var types are String or Number

While...
Endwhile

Description
Executes a block of statements as long as the condition is true.

6/11/2012

51

Outpost Scripting v2.6

Users Guide

Syntax

WHILE <condition>
<statements>

ENDWHILE

Example
SCRIPT
VAR Fname as string

BEGIN
FINDFILE(*“c:\data\” & “*.txt”)
Fname = NextFile(0)

Wi | e Exi sts(Fname) = TRUE

Print(Fname)
Fname = NextFile(0)
ENDWHI LE
END
Notes

1. See Also: IF, LOOP

WriteFile()

Description
Writes data to a named file

Syntax
WRITEFILE(<data>, <file_name>)
data

file_name

Example
SCRIPT
VAR MsglID as number

BEGIN
FindMessage(1,4, " "NOAA*'")
MsglID = NextMessage(0)

while msgid > 0

Print(*"Found Msg: " & SUBJECT)
WiteFil e(MESSAGE, Subject & “.txt")

MsglID = NextMessage(0)
endwhile

END

Example #2

" Append a line of text to an existing file

SCRIPT
VAR Fname as string
VAR Fdata as string

BEGIN
Fname = "C:\data\Master.ini" *
Fdata = ReadFile(Fname) "
Fdata = Fdata & CRLF & "Cmd=0"
WriteFile(Fdata, Fname) -
END

Notes

1. Any content can be written to a file. If the file already exists, it will first be deleted.
2. The data to be written can be the explicit string in quotations, or a variable containing

the string.

3. Inthe above example, the NextMessage loads the next message and all its variables
into the system variables: BBS, FROM, TO, SUBJECT, MESSAGE. The
WriteFi le statement writes the content of the variable MESSAGE (the current Outpost
message) to the file by the name “<sub ject>_txt”; the file has the subject string in

the title.

4. Inthe 2nd example, this is a way to append data to a file. Essentially, read the contents,

a text string or variable of the data to be written
a string or variable of the name of the file to be created

“ set up the msg search
loads the current msg

" Name of a file
" Contents of the file

set the file name

Read the file contents
* append a line of text

Write the new file contents

6/11/2012

52

Outpost Scripting v2.6

Users Guide

append the addition, and write it back.

6/11/2012

53

Outpost Scripting v2.6

Users Guide

6 Error Messages

6.1 Compiler Errors

Anytime the compiler detects an error, it reports it with the offending script line number and
ends. The following are the error messages that may be generated at compilation time

Error Message

M eaning

Error: “Variable Name” expected at line x

A VAR statement was executed and the variable name was not
specified. The required format is:

VAR <var_name> AS [STRING | NUMBER 1]

Error: “String or Number” expected at line x

A VAR statement was executed and the variable type was not
specified. The required format is:

VAR <var_name> AS [STRING | NUMBER]

Error: “Math Factor” expected at line x

Could not identify the parameter in parenthesis.

Error: “ldentifier” expected at line x

Compiler was expecting a Variable name, but something else
showed up.

Error: “Number” expected at line x

Compiler was expecting a number, but something else showed
up.

Error: “String” expected at line x

Compiler was expecting a string, but something else showed
up.

Error: “Quotation Marks” expected at line x

Compiler was expecting the ending Quotation Mark for a
string, but none was found prior to the end of the line.

Resolution: check each string for an ending quotation mark.

Error: “<character>" expected at line x

The compiler is anticipating a character or word, but it is
missing. This type of error represents a syntax error with the
script. The following may be reported as missing:

= () usually missing the closing parenthesis around a
function or arithmetic expression

. , missing the comma in a list of data items, usually with
the MoveF1i le function

= = missing the assignment operator (equals sign) for an
expression

= SCRIPT, BEGIN, or END - Minimum required
script statements.

= AS- required in a Variable declaration statement

= THEN, ENDIF - minimum required constructs in an 1F

statement
= ENDWHILE - minimum required constructs in an WHILE
statement
= ENDLOOP - minimum required constructs in an LOOP
statement
Undefined identifier “__" at line x A word was encountered in an expression that was not
previously defined as a variable.
One possible cause is misspelling a Reserved System Name.
These are:
= MYCALL
= TACCALL
= BBS
= TNC
= FILTER
= RETRIEVE
6/11/2012 54

Outpost Scripting v2.6

Users Guide

Error Message M eaning
= FROM
= TO
= SUBJECT
= MESSAGE
= MTYPE
= SRNOTE
= LMI
= TRUE
= FALSE
= ON
= OFF
= CRLF

Duplicate identifier “__" at line x

A VAR statement is attempting to define a variable that is
previously defined.
The biggest contributor to this is the user attempting to define a

variable with a name that matches a Reserved System Name.
See the above list of reserved words already defined.

6.2 RuntimeErrors

All Runtime errors will be written to the Runtime Monitor display.

Also, see the OnError Statement for setting up how to handle these errors.

Error Message

M eaning

Deleting file <name> ... failed

Source: Delete

The script attempted to delete a file name but could not.
Possible causes include:

(i) file does not exist,
(i1) file permissions are set as READ-ONLY.

>>> Move Error: Source file <path\name> does
not exist

Source: MoveFile

The script attempted to move a file name that did not exist.

>>> Move Error: Destination <path> does not
exist

Source: MoveFile

The script attempted to move a file name to a destination that
did not exist.

>>> File Open Error: file <name> not found

Source: FILEREAD

The script attempted to open and read a file name that did not
exist.

>>> Qutpost is not running; no Send/Receive
Initiated.

Source: SENDRECEIVE

The script attempted to initiate an Outpost Send/Receive
session. However, Outpost is not running.

>>> Program <name> not found

Source: Run, Runw

The identified program name was not found. Check the
spelling and path to the program name.

>>>FINDMESSAGE: Folder value out of range
(valid: 1..6)

Source: FindMessage

The Folder value was either less than 1 or greater than 6.
Check the value entered and try again..

>>>FINDMESSAGE: Field value out of range
(valid: 1..5)

Source: FindMessage

The Field value was either less than 1 or greater than 5. Check
the value entered and try again..

6/11/2012

55

Outpost Scripting v2.6 Users Guide

6/11/2012 56

