Outpost Scripting v3.5.1 Users Guide

5 Command Reference

5.1 Summary

General Functions and Statements

Beep Statement Plays a beep on the PC speaker
Begin Statement Required; Marks the beginning of the script
Clear Statement Clears the runtime monitor display
End Statement Required; Marks the end of the script
Exit Statement Causes Opscripts.exe to terminate when encountered
If... Then... Else Statements Conditional check
Loop... EndLoop Statements Unconditional loop
OnError Statement Determines how to proceed in the event an error
occurs
Script Statement Required; Identifies this file as a script
SendOnly Statement Initiates an Outpost Send Only session
SendReceive Statement Initiates an Outpost Send/Receive session
Var Statement Defines a user variable
While.. EndWhile | Statements Conditional loop
Now() Functipon Returns date and time based on user formatting
Pause() Function Causes the script to pause
Play() Function Plays a .wav file
Print() Function Prints a string of text to the Runtime Monitor window
Run() Function Run a program, does not wait for it to complete
Runw() Function Run a program, waits for it to complete
File Functions
Delete() Function Deletes a file
Exists() Function Tests if a file exists
FindFile() Function Sets up to find matches to a file mask
GetFileName() Function Returns the file name only from a full path file string
MoveFile() Function Moves a file to a different directory
NextFile() Function Gets the next file that matches a file mask
ReadFile() Function Read a file content
ValidFileName() Function Creates a valid file name from path and name
elements
WriteFile() Function Writes text to a named file
String Functions
FindWord() Function Sets up to find matches to a comma-delimited string
NextWord() Function Gets the next word in a comma-delimited string
Len() Function Returns the length of a string
Message Statements and System Variables
CreateMessage Statement Creates an Outpost message based on parameters
FindMessage() Function Searches Outpost for a message
MoveMessage() Function Moves an Outpost message to a different folder
NextMessage() Function Gets the next Outpost message that matches the
search
BBS System Variable | Holds the BBS name

3 February 2022

34




Outpost Scripting v3.5.1

5.2

Users Guide

FROM System Variable | Holds the FROM address

TO System Variable | Holds the TO address

SUBJECT System Variable | Holds the Subject of the message

MESSAGE System Variable | Holds the body of the message

MTYPE System Variable | Holds the message type

URGENT System Variable | Holds the state of the outgoing message Urgent flag.
BBSMSGNO System Variable | Holds the BBS message number for received messages
RECEIPTS System Variable | Holds the Receipt flags for outgoing messages

LMI System Variable | Holds the Local Msg ID for received messages
DATETIME System Variable Holds the Date Time string for received messages

Send/Receive Statements and System Variables

SendOnly Statement Initiates an Outpost Send Only Session
SendReceive Statement Initiates an Outpost Send/Receive Session
Expire() Function Sets up a bulletin for deletion from the BBS
BBS System Variable | Holds the BBS name

TNC System Variable | Holds the TNC name

MYCALL System Variable | Holds the Station Identifier (Call Sign)
TACCALL System Variable | Holds the Tactical Call

RETRIEVE System Variable | Holds what message types are to be retrieved
FILTER System Variable | Holds the categories for a Filter Retrieve
SRNOTE System Variable Holds the results of a Send/Receive Session

Other System Variables

TRUE System Variable | Value against which conditions can be checked
FALSE System Variable | Value against which conditions can be checked
ON System Variable | Value that can be used to set items

OFF System Variable | Value that can be used to set items

CRLF System Variable | Value that causes a carriage return/Line feed on

output

pecial Characters

‘¢ (single quote)

Description

The single quote starts the beginning of a comment. Everything after the single quote is
part of the comment up until the end of the line.

Syntax
¢ <comment>

Example

“Comments can begin as the first character

X = x+ 1

Notes

1.  All comments are preceded with a single quotation mark.

or after a statement

+-/*

Description

Arithmetic operators: OSL supports the standard arithmetic operations. All precedence

rules apply.

Syntax

<var> = [var | number] <operand> [var | number]

Example
X X + 1
X

Notes

1.  When an expression has a mix of operators, the precedence of execution is multiple

x*((B-y)y/74

3 February 2022

35




Outpost Scripting v3.5.1

Users Guide

and division first, then addition and subtraction.
2. Expressions in parenthesis are always executed first.
3. Space are optional when formatting an expression.

; (semicolon)

Description
Command line continuation. Placing a semicolon at the end of a line allows you to add
another command to the same line.

Example
X=x+1l; y =y -1
BBS = *“K6FB-2; TNC = *““GARAGE-TNC”

Notes

and debugging your script.

1.  Care should be taken with this feature since it may contribute to readability problems

Description
Relationship operators. These are operators are used as part of conditional tests made
with WHILE..ENDWHILE and IF..THEN.. ELSE statements.

Example
#1 IF X > 5 THEN
#2 WHILE Y <= 12

Notes

1. The following relationship operators are defined:
< less than
<= less than or equal to
> greater than
>= greater than or equal to
= equal to

5.3 Command Reference
Assignments Description

Assignments are statements that assign a value, variable, result of a function call, or
arithmetic operation to another variable.

Syntax
<var> = [ number | string | <var> | expression | function ]

Examples

#1. Temp = “Weather.txt”
#2.Result = X / (Y+5)
#3. Fname = NEXTFILE(O)

Notes

1.  The rules of operational precedence apply to all arithmetic calculations.

2. Thereis limited type checking; use caution when mixing strings and numbers in an
arithmetic expression.

BBS

Type
System Variable

Description
Holds the Friendly Name of the BBS. This variable is used by the CREATEMESSAGE and
SENDRECEIVE statements

Syntax
BBS = <bbs_name> Default = blank

Example

BBS = “LCARC Pathl” " LCARC"s K6FB-2 BBS via AABWK-7
Print(“Checking BBS “ & BBS)

SendReceive

Notes
1.  The value that you assign to the BBS variable is the Friendly name of a BBS that is
already defined in Outpost. Connect Names can also be used, but in the event of

3 February 2022

36



Outpost Scripting v3.5.1

Users Guide

multiple BBS Friendly Name entries with the same Connect Name, the 1 BBS entry will
be used (#817, #858, 16-May-10).

2. If this BBS is not set up in Outpost, at the time the Send/Receive session is attempted,
Outpost will generate the message: “Either the Station ID, BBS, or TNC is not
selected...”. This message may not pop to the front; you may need to minimize the
Script window to see it.

BBSMSGNO Type

System Variable

Description

Holds the BBS message number that was associated with the message retrieved from the

BBS.

Example

Expire(BBSMSGNO)

SendReceive

Notes

1.  Thisfield is for display purposes only after retrieving a message.

Beep Description

Causes the PC to Beep

Syntax

Beep

Example

IF x > 5 THEN

BEEP

ENDIF

Notes

1.  Also, see the PLAY statement as an alternate audible annunciation option.

Begin Description

Defines the beginning of the OSL Script statements.

Syntax

BEGIN

Example

SCRIPT

VAR x AS NUMBER

BEGIN

X =5
Print(“The value of ”’x”” is ” & X)

END

Notes

1.  This statement acts as a boundary between all variable declarations and the first script
statement.

2. After pressing NEW, this statement is 1 of 3 statements that are automatically inserted
in the new script editing window.

3.  Also, see the SCRIPT, END statements.

Clear Description

Clears the runtime monitor display. Used primarily for display formatting

Syntax

Clear

Example

Loop

Print(“polling BBS ” & BBS)
SendReceive
Pause(5)
Clear
Endloop

3 February 2022

37



Outpost Scripting v3.5.1

Users Guide

Notes

CreateMessage

Description
Creates a message based on the settings of the message-reserved variables, and writes the
message to the Outpost message database.

Syntax
CreateMessage

Example
BBS = *K6FB-2”
FROM= **KNGPE”
TO= “K6TEN”
SUBJECT= “Repeater Update”
MESSAGE = ReadFile(RepeaterMessage)
MTYPE = “PRIVATE”
CreateMessage

Notes

1.  All message reserved variables must be set prior to executing this statement.

2.  Message-reserved variables are: BBS, FROM, TO, SUBJECT, MESSAGE,
MTYPE

3. Avalid message is written to the Outpost message database and is set for the next
send/receive session.

4.  Also,see: BBS, TNC, MYCALL, TACCALL, RETRIEVE, FILTER

CRLF

Type
System Predefined Variable

Description

Contains the 2 characters for Carriage Return and Line Feed. It is used to insert a Carriage
Return / Line Feed (same as pressing the Enter Key) in a string so that a single string can
display multiple lines.

Example
Msg = “Hi Cap,” & CRLF & “Hope all is well.” & CRLF & “73, Jim”

Notes
1. The CRLF is a variable and not part of the string that you define. It is appended to
other portions of the string with an “&”.

DATETIME

Type
System Variable

Description
Holds the retrieved message Date time as listed on the BBS and the Outpost message listing.

Example
Print(DATETIME)

Notes
1.  Thisfield is for display purposes after retrieving a message. There is no effect to set this
field.

Delete()

Description
Deletes the named file.

Syntax
DELETE( file_name )

Return
none

Example

#1. Delete(“weather-report.txt”)

#2. FName = “weather-report._txt”
Delete(FName)

3 February 2022

38



Outpost Scripting v3.5.1

Users Guide

Notes
1. Inthe event the file does not exist, is open, or is write-protected, the file will not be
deleted and an error message will be displayed on the Runtime Monitor.
End Description
The last statement in the script, Required.
Syntax
END
Example
SCRIPT
BEGIN
Print(“Hello World!”)
END
Notes
1.  This statement must be the last statement in the script.
2. After pressing “NEW”, this statement is 1 of 3 statements that are automatically
inserted in the new script editing window.
3.  Also, see the SCRIPT, BEGIN statements.
Exists() Description
Tests whether the named file exists.
Syntax
EXISTS( file_name )
Return
Number: O - FALSE
1 — TRUE
Example
#1. If EXISTS(“weather-report.txt™) = TRUE then
#2. FName = “weather-report._txt”
Result = Exists(FName)
IF Result = FALSE THEN
Notes
1.  The function will return either a 0 or 1 depending on the outcome.
2. When using with the I F statement (1% example), use the System Variables TRUE or
FALSE for the test.
Exit Description
Terminate Opscripts.exe when encountered (#748)
Syntax
EXIT
Example
SCRIPT
BEGIN
Print(“Hello World!”)
EXIT “ terminate Opscripts
END
Notes
1.  This command is used whenever you want to run a script from Outpost and terminate
scripting when done.
2. Save your work before running with this command. It will exit without prompting to
save your work.
Expire() Description
Delete a bulletin message that belongs to you.
Syntax
EXPIRE(C O | Bbs_Msg_ID )

3 February 2022

39



Outpost Scripting v3.5.1

Users Guide

Example
FindMessage(1, 4, "*WX ADVISORY*') ' 1=Intray, 4=Subj Field of Bull name
MsgID = NextMessage(0)

WHILE MsgID > O ' One exists if greater than 0
IF FROM = "KN6PE' then "is it from me? If so, its my Bulletin
Print(*'Deleting " & subject)
EXPIRE(O) 'set it up to delete next S/R cycle
movemessage(MsglD,4) ‘ move the message to Archive Folder
ENDIF
MsgID = NextMessage(0) ' get the next match, if any
ENDWHILE
Notes

1.  Use a “0” with the Expire command to use the BBS message number associated with
the last message loaded by the NextMessage function.

2. Inthe above example, suppose you periodically post a bulletin message that contains
the subject line phrase “WX ADVISORY”. This lets you find the message again so we can
delete it when a new update comes along.

3. The user needs to test to determine if the message being retrieved is in fact a bulletin
that (i) exists, and (ii) the user originally posted. Only the bulletin owner can delete a
posted bulletin.

FILTER Description

System Predefined Variable. Holds the string of concatenated filter values that will be used

during a Filter Retrieval.

Syntax

FILTER = "Filterl:filter2:.._:filtern”

Default = blank

Example

#1. RETRIEVE = “PF”

FILTER = “QST”

#2. FILTER = “LINUX:KEPS:SOCTY”

Notes

1. FILTER must be set if the ““F”” Filter Retrieve option is set.

2 All filters must be separated with colons ““-””.

3. The entire Filter assignment enclosed in quotations.

4 Any number of filters can be assigned to the FILTER variable.
FindFile() Description

Searches for and collects all file names that match a particular string pattern.

Syntax

FINDFILE( pattern )

pattern: some or all of the file name to match; use “*” to fill. For instance
c:\data\WX*._txt :finds files that start with WX and end with . TXT
*_* : finds all files in the current directory

Example

SCRIPT

VAR NameOnly as string
VAR FullName as string
VAR ctr as number

BEGIN
ctr =0
FINDFILE(“c:\data\*.txt)
Ful IName = NextFile(0)

While Exists(FullName) = TRUE
NameOnly = GetFileName(FulIName)

Print(FullName & “ -- “ & NameOnly)

3 February 2022

40



Outpost Scripting v3.5.1

Users Guide

FulIName = NextFile(0)
ctr = ctr + 1
ENDWHILE

Print(“Files Found: “ & ctr)
END

Notes

1.  This function initializes the File Mask function allowing the NextFile function to
retrieve each file that matches the mask.
2. Each file returned will contain the equivalent amount of the path as was set up. For

instance:

If FindFi le contains...
scripts\test*.txt
c:\data\*.*

3. On entering another file mask, the retrieval is reset.
Use the “*” to match any character(s) between characters

b

5. Seethe NextFile Function

then NextFi les will include
script\full_file_name
c:\data\full_file_name

FindMessage()

Description
Searches all Outpost messages that match a

Syntax

FINDMESSAGE( <folder>, <field>, <pattern> )

particular string pattern.

folder: A number corresponding to an Outpost folder to search.
Valid numbers are:
1 InTray
2 Out Tray
3. Sent Folder
4. Archive Folder
5 Draft Folder
6.  Deleted Folder
11. Special Folder #1
12. Special Folder #2
13. Special Folder #3
14. Special Folder #4
15. Special Folder #5
field: A number corresponding to an Outpost Message field to search.
Valid numbers are:
1. BBS
2. FROM
3. TO
4. SUBJECT
5. MESSAGE
pattern: The string pattern to match. Wildcard use (KN6*) is allowed.

Characters in
Pattern

Matches in String

?

Any single character

*

Zero or more characters

[charlist]

Any single character in charlist

[Icharlist]

Any single character not in charlist

Return
none

Example
SCRIPT

VAR MsglID as number

VAR ctr as number

BEGIN
ctr = 0

FindMessage (1,4, "NOAA*'™)

3 February 2022

41



Outpost Scripting v3.5.1

Users Guide

MsgID = NextMessage(0)

while msgid > 0
Print(""Found Msg: " & SUBJECT)
MsgID = NextMessage(0)
ctr = ctr + 1

endwhile

Print("'Messages found: " & ctr)
END

Notes

1. This function initializes the Message Mask function allowing the NextMessage
function to retrieve each message that matches the mask. For instance:
If FindMessage contains... then NextMessage will include
CUP* CUPertino, CUP043..
* <anything>

2. On entering another message mask, the retrieval is reset.

See the NextMessage Function

4.  The pattern match is not case sensitive, meaning that a mask of “repeater” will match
to a string “REPEATER”.

5.  Pattern Match Examples:

w

Pattern Target String Result
“F” “F” Matches
“ “F” Matches
“FFF” “F” No match
“a*a” “aBBBa” Matches
“[A-2]" “F” Matches
“[A-Z]" “F” No Match
“a#a” “a2a” Matches
“a[L-P]#[!c-€e] “aM5b” Matches
“B?T*” “BAT123Kng” Matches
“BPT*” “CAT123Kng” No Match

6.  To match the special characters left bracket ([), question mark (?), number sign (#), and
asterisk (*), enclose them in brackets.

7.  The right bracket (]) cannot be used within a group to match itself, but it can be used
outside a group as an individual character.

8. By using a hyphen (-) to separate the lower and upper bounds of the range, charlist can
specify a range of characters.

9.  To specify multiple ranges for the same character position, put them within the same
brackets without delimiters. Example: [A—-CX-Z] matches letters A thru C, and X thru Z.

10. A hyphen (=) can appear either at the beginning (after an exclamation point, if any) or at
the end of charlist to match itself.

FindWord()

Description
Sets up to return the individual words found within a comma-delimited string.

Syntax

FINDWORD( <string> )

<string>: string contains individual words that need to be retrieved
Example

SCRIPT

VAR ListOfBBS as string
VAR SingleBBS as string
VAR ctr as number

BEGIN
ctr = 0
ListOfBBS = “K6FB-1, W6XSC-1, K6TEN, SANDIEGO™
FINDWORD(ListofBBS)

SingleBBS = NextWord(0)

While LEN(SingleBBS) > 0
Print(“Next BBS name is “ & SingleBBS)
SingleBBS = NextWord(0)
ctr = ctr + 1

ENDWHILE

3 February 2022

42



Outpost Scripting v3.5.1

Users Guide

Print(“Number of BBSs Found: “ & ctr)
END

Notes

1. This function initializes the String Search function allowing the NextWord function to
retrieve each word from the array of comma-delimited words.

2. On entering another Word search, the retrieval is reset.

3. Thelist of strings must be in a set a quotes. Individual words must be separated by
commas.

4. See the NextWord Function

FROM

Description
System Predefined Variable. Holds the call sign or tactical calls for the message From field.

Syntax
FROM = “<call_sign>" Default = blank

Example
From = “KN6PE”

Notes
1. The FROM assignment is enclosed in quotations.

GetFileName()

Description
Returns the file name portion of a string that includes the file name and path

Syntax
<var> = GetFileName(<full_name>)

Example
SCRIPT
Var FullName as String
Var FileName as String

BEGIN

FullName = “c:\data\Weather.txt”

FileName = GetFileName(FulIName) returns “Weather.txt”
Print(FullName & “ ” & FileName)

END

Notes

1. This command is useful if you intend to create messages with the subject name
embedded in it

If... Then
[Else]
Endif

Description
Conditionally executes a block of statements dependent on the state of the condition.

Syntax
IF <condition> THEN
<statements>
[ ELSE
<statements> ]
ENDIF

Example
#1. If x > 5 THEN
X =x+1

ENDIF

#2. 1f x > 5 THEN
Print(x)
ELSE
X =x+1
ENDIF

Notes

3 February 2022

43



Outpost Scripting v3.5.1

Users Guide

1. The ELSE statement is optional and not required
2.  SeeAlso:WHILE, LOOP
LEN() Description
Returns the length of a string (number of characters)
Syntax
<result> = LEN(<string>)
result : integer, indicates the number of characters in the string
string : the string to be tested
Example 1
SingleBBS = “K6FB-1"
WordLen = LEN(SingleBBS)
Example 2
SingleBBS = “K6FB-1"
While LEN(SingleBBS) > 0O
Notes
LMI Description
System Predefined Variable. Holds the Local Message ID (LMI) if enabled in Outpost for
incoming messages.
Syntax
LMI = “[ blank | <LMI value>" Default = depends on Outpost setting
Example
No example
Notes
1.  Thisfield is for display purposes after retrieving a message. There is no effect to set this
field.
2. See the Outpost Users Guide for a description of LMI.
Loop... Description
EndLoop Continuously loops on a block of statements
Syntax
LOOP
<statements>
ENDLOOP
Example
LOOP
SendReceive
Pause (300)
ENDLOOP
Notes
1. The only way to exit this loop is to press the “STOP” button on the Runtime control
form.
2.  SeeAlso: IF, WHILE
MESSAGE Description
System Predefined Variable. Holds the body of the message.
Syntax
MESSAGE = “<message text>" Default = blank
Example
#1.Message= “Hi Vince, All is still OK here. 73, Jim”
#2. Message= ReadFile(“Message.txt™)
Notes
1.  Use a string assigned to MESSAGE for short messages.

3 February 2022

44



Outpost Scripting v3.5.1

Users Guide

2. Use the ReadFi le() function to read in the contents of a file to set the message. See
Script example #3.

MovekFile()

Description
Moves the named file from one location to another.

Syntax
MOVEFILE( <path\file_name>, <dest_path> )

path\file_name : The current path and file name of the file to be moved

dest_path : The Path only of where the file will be moved. Do not include any
trailing back slashes

Return
none

Example
#1. MoveFile( “c:\data\wx.txt”, “c:\data\sent” )
#2. MoveFile( InName, “c:\data\sent” )

Notes

1.  If the source file is not found, a runtime error will occur and the script will stop. Itis
recommended that you check for the presence of the file with the Exists () function
prior to moving or reading a file.

MoveMessage()

Description
Moves a message from one Outpost folder to another.

Syntax
MOVEMESSAGE( <msg_id>, <folder_no> )
Msg_id: Outpost message pointer. Usually returned by the NextMessage
statement
folder_no: is defined as:
1. InTray
2 Out Tray
3. Sent Folder
4. Archive Folder
5 Draft Folder
6.  Deleted Folder
11. Special Folder #1
12. Special Folder #2
13. Special Folder #3
14. Special Folder #4
15. Special Folder #5

Return
none

Example

#1. MoveMessage(MsglID, 4) message is moved to the Outpost
archive folder

#2. MoveMessage(MsglID, 6) message is moved to the Outpost
deleted folder

Notes

1. The Message ID is an internal Outpost identified not typically used in the normal
operation from the Outpost forms. From an OSL perspective, the Message ID typically
comes from the NextMessage function.

2. Any folder value other than those listed above will cause and error and the script to
stop.

MTYPE

Description
System Predefined Variable. Holds the message type for a message being created.

Syntax
MTYPE= “PRIVATE” | “NTS” | “BULLETIN” Default = blank

Example
#1.MTYPE = “Private”

3 February 2022

45



Outpost Scripting v3.5.1

Users Guide

#2.MTYPE = *“NTS”
Notes
1.  Only one message type can be set for each message. If more or set, the last Message
Type set will the one applied the next time the CreateMessage statement is
executed.
2. If not provided, MTYPE defaults to “PRIVATE”
MYCALL Description
System Predefined Variable. Holds the value of the Call Sign that is used to initialize the
interface. This variable is used by the SendRecelve statement.
Syntax
MYCALL = <call_sign> Default = blank
Example
MYCALL = “KN6PE”
Notes
1.  If left blank, then Outpost will use the currently defined Call Sign as defined from
Outpost’s Setup > Identification form (#758).
NextFile() Description
Retrieves the next file name that was previously collected by the FindFi le function
Syntax
<Var_name> = NEXTFILEC 0 )
Return
String: Next file name (only) that matches the pattern
If non-blank, valid file name
If blank (null string), no file found, or reached the end of the list
Example
SCRIPT
VAR NameOnly as string
VAR FullName as string
VAR ctr as number
BEGIN
ctr = 0
FINDFILE(*“c:\data\*.txt)
FulIName = NextFile(0)
While Exists(FullName) = TRUE
NameOnly = GetFileName(FulIName)
Print(FullName & “ -- & NameOnly)
FulIName = NextFile(0)
ctr = ctr + 1
ENDWHILE
Print(“Files Found: ” & ctr)
END
Notes
1.  This function retrieves the next file previously initialized by the FindFi le function.
The function returns the file name with whatever path was set up as the FindFile()
parameter.
2. The parameter “0” is required. This is for future use.
3.  Each time this function is called, the next file that matches the mask is returned.
4. When there are no other matches, a blank string is returned. Use the EXISTS()
Function to test whether a valid file name was returned.
NextMessage() Description
Retrieves the next message ID that was previously collected by the FindMessage function.
Syntax
<Var_name> = NEXTMESSAGE( 0 )

3 February 2022

46



Outpost Scripting v3.5.1

Users Guide

Return
Integer: next file that matches the pattern
If > 0: a valid Outpost message ID
If = 0: no message found, or reached the end of the list

Example

SCRIPT

VAR MsglID as number
VAR ctr as number

BEGIN
ctr = 0
FindMessage (1,4, "NOAA*™)
MsgID = NextMessage(0)

while MsgID > 0
Print(*"Found Msg: " & SUBJECT) “ only print the subjects
MsgID = NextMessage(0)
ctr = ctr + 1

endwhile

Print("'Messages found: " & ctr)
END

Notes

1.  This function retrieves messages based on the selection criteria set up by the
FindMessage () function.

2. The Parameter “0” is required. This is for future use.

Each time this function is called, the next message that matches the mask is returned.

4.  When there are no other matches, a value of 0 is returned. Use an IF.. Then to test
whether there is a valid message returned.

w

NextWord()

Description
Retrieves either the sequentially next word or a specific word that was previously collected
by the FindWord function

Syntax

<Var_name> = NEXTWORD( <index> )

index: 0 (zero), returns the next word from the list
1..n, returns the indexed word from the list

Return

String: Next word name that was set up
If non-blank, valid word name
If blank (null string), no word found, or reached the end of the list

Example 1

SCRIPT

VAR SingleBBS as string
VAR ctr as number

BEGIN
ctr = 0
FINDWORD(*“K6FB-1, W6XSC-1, K6TEN, SANDIEGO™)
SingleBBS = NextWord(0)

While LEN(SingleBBS) > 0
Print(*“Next BBS name is ” & SingleBBS)
SingleBBS = NextWord(0)
ctr = ctr + 1

ENDWHILE

Print(“Number of BBSs Found: ” & ctr)
END

Example 2
SCRIPT
VAR SingleBBS as string
VAR ctr as number
BEGIN
ctr = 4

3 February 2022

47



Outpost Scripting v3.5.1

Users Guide

FINDWORD(*“K6FB-1, W6XSC-1, K6TEN, SANDIEGO™)
SingleBBS = NextWord(ctr)

While ctr > 0
Print(“Next BBS name is ” & SingleBBS)
ctr = ctr - 1
SingleBBS = NextWord(ctr)

ENDWHILE
END

Notes

1.  This function retrieves the next word previously initialized by the FindWord function.

2 If the parameter is O (zero), then the next sequential word is returned.

3.  If the parameter is > 0, then the word that is indexed by the parameter is returned.

4 A parameter is less than O or greater than the count of the number of words will
returned a blank string.

5.  For sequential (0) calls, each time this function is called, the next word is returned. The

original string is not affected.

6.  When there are no other matches, a blank string is returned. Use the LEN() Function

to test whether a string with any length was returned.

Now()

Description

Returns the date and/or time in a format specified by “user.”

Syntax

NOW( “<blank>" | “<format>")

Where <format> is:

Date options

Symbol Range

d 1-31 (Day of month, with no leading zero)

dd 01-31 (Day of month, with a leading zero)

w 1-7 (Day of week, starting with Sunday = 1)

ww 1-53 (Week of year, with no leading zero; Week 1 starts on Jan 1)

m 1-12 (Month of year, with no leading zero, January = 1)

mm 01-12 (Month of year, with a leading zero, January = 01)

mmm Displays 3-character abbreviated month names

mmmm Displays full month names

y 1-366 (Day of year) This essentially is the Julian day, a
continuous count of days since the beginning of the year.

vy 00-99 (Last two digits of year)

yyyy 100-9999 (Three- or Four-digit year)

Time options

Symbol Range

h 0-23 (1-12 with "AM" or "PM" appended) (Hour of day,
with no leading zero)

hh 00-23 (01-12 with "AM" or "PM" appended) (Hour of day,
with a leading zero)

n 0-59 (Minute of hour, with no leading zero)

nn 00-59 (Minute of hour, with a leading zero)

m 0-59 (Minute of hour, with no leading zero). Only if
preceded by h or hh

mm 00-59 (Minute of hour, with a leading zero). Only if
preceded by h or hh

s 0-59 (Second of minute, with no leading zero)

ss 00-59 (Second of minute, with a leading zero)

Example
#1. Now(""'") 12/31/2021 5:24:58 PM

#2. Now("'m/d/yy"")
#3. Now("'mm/dd/yyyy"")
#4. Now("'dd-mmm-yyyy"")

12/31/21
12/31/2021
31-Dec-2021

3 February 2022

48



Outpost Scripting v3.5.1

Users Guide

#5. Now(""dd-mmmm-yyyy, hh:mm*) 31-December-2021, 17:25
#6. Now("'dd-mmm-yyyy, hh:mm AM/PM"*) 31-Dec-2021, 5:25 PM

Notes
1. A parameter must always be entered with this function.

ON, OFF

Description
System Predefined Variable. CONSTANTS

Notes
1.  Canbe used as a setting and for checking. ON=1, OFF =0

OnError

Description
Sets how Opscripts will handle specific types of errors

Syntax
ONERROR [ STOP | PAUSE | CONTINUE ] Default=STOP

Example
ONERROR STOP

ONERROR CONT INUE “ don’t worry on an error
DELETE(fname)

Notes
1.  Setting a STOP condition will cause the script to report the error on the Runtime form,
and stop execution of the script.
2. Setting a PAUSE condition will pop up a box telling the user to either press STOP to stop
processing the script, or RESUME to continue
3.  Setting a CONTINUE condition will indicate on the Runtime form that an error occurred,
and we are continuing anyway.
4.  ONERROR is used to handle the following situations:
= Divide by zero
= RUN(), RUNW(): Running a program, and the program is not found
= DELETE(): deleting a file, but it does not get deleted (could be read-only, or
opened to another program)
= MOVEFILE(): Moving a file, but it the destination directory does not exist
= MOVEFILE(): Moving a file, but it the source file does not exist
= READFILE(): Reading a file, but it the file does not exist
= WRITEFILE(): Creating a file, but it did not happen (could be read-only, or opened
to another program)
= FINDMESSAGE(): the Folder number is not between 1 and 6 (In tray thru Deleted
folder). If the CONTINUE option is set, the Folder value is overridden to a value of
“1” (In Tray), and processing continues.
= FINDMESSAGE(): the Field number is not between 1 and 5 (BBS thru MESSAGE) If
the CONTINUE option is set, the Field value is overridden to a value of “1” (BBS),
and processing continues.
5.  Once an ONERROR condition is set, all errors after that point will be processed with that
setting that until a different ONERROR condition is set.

Pause()

Description
Causes the script to pause.

Syntax
PAUSE( seconds )

Example
#1. pause(60) Pauses for 60 seconds

#2.pvalue = 60
Pause(pvalue) Pauses for 60 seconds

#3. pause(0) Script stops, waits for user interaction

Notes

2. Any value greater than zero will cause the script to pause for the number of seconds
indicated. Once this statement is called, the script pauses and the time remaining will
count down and be displayed in the lower right portion of the status bar.

3. Avalue of “0” will cause the script to pause, and requires the user to press the Resume

3 February 2022

49



Outpost Scripting v3.5.1 Users Guide

button on the Runtime Monitor window. This may be useful when there is something
that the user needs to do prior to letting the script proceed.

Play() Description
Causes the script to play the named .wav file.

Syntax
PLAY( wav_File_name )

Example
#1. Play(“tada.wav’™)

#2.WavName = “tada.wav”

Play(WavName) same, with string variable
Notes
4.  The file must be locatable either by a fully qualified path or by the system path
statement.
5. In the event the file is not found or there is no sound card on your PC, the PC will sound
a“beep.”
Print() Description
rints a string of text to the Runtime Monitor window.
Pri ing of he Runtime Moni ind
Syntax
PRINT( <text_string> )
Example
#1. Print(15) prints the number 15
#2. x = 15 set “x” to 15
Print(x) print “x”; same result as above

#3. Print(“Starting Process’™) printa string

#. X = x + 1 use “x” as a counter
Print(“Pass #” & X) print a string and variable

#5. FName = “Weather.txt” assign a file name to Fname
Print(*“The file is ” & FName)

Notes

1. Print will output a single or concatenated string to the runtime monitor window.

2. Multiple string components can be added and separated by an ampersand “&” sign.
3. Content can be a mix of explicit string values and variables.

ReadFile() Description
Reads the content of the named file and assigns its contents to a string variable.

Syntax
<Var_name> = READFILE( file_name )

Return
String: file contents

Example
#1. X = ReadFile(*“c:\data\wx.txt)
#2. MESSAGE = ReadFile(Fname)

Notes
1. Inthe event the file does not exist, or the path is wrong, a “file not found” message is
displayed, and the script continues to run.

RECEIPTS Description
System Predefined Variable. Holds the settings for overriding the Receipt Requests for this
message.

3 February 2022 50



Outpost Scripting v3.5.1 Users Guide

Syntax

RECEIPTS = “[ <blank> | R [ D11 ” Default = blank
Example

RECEIPTS = “RD” ‘ Request both a Delivery and Read Receipt
Notes

1.  The RECEIPTS assignment is enclosed in quotations.

RETRIEVE Description
System Predefined Variable. Holds the string representation of the types of messages to be
retrieved. This variable is used by the SENDRECEIVE statement.

Syntax

RETRIEVE = <*P” “N” “B” “F”> Default="P”
Example

#1. RETRIEVE = “P” retrieve only Private messages
#2. RETRIEVE = “PNB” retrieve all message types

#3. RETRIEVE = “PF” requires Filters to be set
Notes

1. The coding for RETRIEVE is as follows:
P = Private messages
N = NTS messages
B = Bulletins
F = Filtered
2. If the “F” Filter and “B” Bulletin options are both set, then only the “F” Filter option will
be used and the “B” will be ignored.
3.  Ifthe “F” Filter option is set, then the Filter string must also be set. If Filter string is not
set, then the “F” Filter option is ignored.
4,  RETRIEVE must be set prior to the next SendReceive statement.

Run() Description
Causes the script to run a program, and does not wait for the program to complete before
continuing with the script.

Syntax
RUN( exe_file_name )

Example
#1. Run(““notepad.exe’)
#2. Run(PName)

Notes

1.  The executable file must be locatable either by a fully qualified path or by the system
path statement.

2. Inthe event the program does not exist, a “program not found” message is displayed,
and the script continues to run.

Runw() Description
Causes the script to run a program, and will wait for the program to complete before
proceeding with the rest of the script.

Syntax
RUNW( exe_File_name )

Return
none

Example
#1. Runw(““notepad .exe™)
#2. Runw(PName)

Notes

1. The executable file must be locatable either by a fully qualified path or by the system
path statement.

2. Inthe event the program does not exist, a “program not found” message is displayed,

3 February 2022 51



Outpost Scripting v3.5.1

Users Guide

and the script continues to run.

Script

Description
The first OSL statement that appears in the file.

Syntax
SCRIPT
BEGIN
Print(“Hello World!”)
END

Notes

1.  This must be the first OSL command in the script file.

2. After pressing NEW, this is 1 of 3 statements that are automatically inserted in the new
script editing window.

3. Also, see: BEGIN, END

SRNOTE

Description
System Predefined Variable. Holds any Send/Receive Notification message that may occur
from the last Send/Receive Session

Syntax
SRNOTE = “[ <blank> | <Notification string>]” Default = blank

Example
IF Len(SRNOTE) > O then

Print(“*Send/Receive problems, message was >~ & SRNOTE)
ELSE

Print(“Last Send/Receive session was successful!”)
ENDIF

Notes
1. Thisfield is for display purposes after retrieving a message. There is no effect to set this
field.

SendOnly

Description
Initiates an Outpost send only session based on the settings of the system variables.
Messages in the out tray will be sent. No check for incoming messages is made.

Syntax
SENDONLY

Example

FROM = ““KNG6PE”

TO = “K6KP”

SUBJECT = “Will miss tonight’s net”

MESSAGE = “Stuck in traffic; start the net without me” & CRLF
& “73, Jim o KNG6PE”

MTYPE = “PRIVATE”

CREATEMESSAGE

SENDONLY

Notes

1.  All session-specific variables must be set prior to executing this statement.

2. Related System variables used by the SendOnly statement are: BBS, TNC,
MYCALL, TACCALL

3. Opscripts does not perform any error checking on the existence of the BBS and TNC
names entered on these variables. On a Send Only error, Outpost will report the
problem, not Opscripts.

4.  Outpost must be running for this statement to work. An error will occur if Outpost is
not running.

SendReceive

Description
Initiates an Outpost send/receive session based on the settings of the system variables.

Syntax
SENDRECEIVE

Example
MYCALL = “KN6PE”

3 February 2022

52



Outpost Scripting v3.5.1

Users Guide

BBS = *K6FB-2”

TNC = “GARAGE-TNC”

RETRIEVE = “PB”
SENDRECEIVE

Notes

5.  All session-specific variables must be set prior to executing this statement.

6. Related System variables used by the SendReceive statement are: BBS, TNC,
MYCALL, TACCALL, RETRIEVE, FILTER

7. Opscripts does not perform any error checking on the existence of the BBS and TNC
names entered on these variables. On a Send/Receive error, Outpost will report the
problem, not Opscripts.

8.  Outpost must be running for this statement to work. An error will occur if Outpost is
not running.

SUBJECT

Description
System Predefined Variable. Holds the subject for this message.

Syntax
SUBJECT = “<subject text>” Default = blank

Example
#1.Subject = “Status of the W6TDM Repeater”
#2.Subject = ReadFile(“WX080608.txt™)

Notes
1.  Subject Line prefixes will be inserted based on Outpost settings.

TACCALL

Description
System Predefined Variable. Holds the value of the tactical call. This variable is used by the
SendReceive statement.

Syntax
TACCALL = <tac_call> Default =*-"*

Example
#1. TACCALL = ““CUPEOC” sets tactical call to CUPEOC
#2. TACCALL = “-” turns off tactical call

Notes
1. TacCall is turned off by setting the variable to “-*.

TNC

Description
System Predefined Variable. Holds the value of the TNC. This variable is used by the
SENDRECEIVE statement.

Syntax
TNC = <TNC_name> Default = blank

Example
TNC = “GARAGE-TNC”

Notes

1.  The value that you assign to the TNC variable is the name of a TNC that is already
defined in Outpost. For instance, suppose you have a KPC3 that you define in Outpost
and give it a name of “GARAGE-TNC”. This assigned name is what you assign to the TNC
variable.

2. If this TNC is not set up in Outpost, at the time the Send/Receive session is attempted,
Outpost will generate the message: “Either the Station ID, BBS, or TNC is not
selected...”

TO

Description
System Predefined Variable. Holds the call signs or tactical calls of the users for whom this
message is intended.

Syntax
TO = “<call_sign> [, 2nd_address ] Default = blank

3 February 2022

53



Outpost Scripting v3.5.1

Users Guide

Example

#1. To = “KN6PE”

#2. To = “KN6PE, SMTP:kn6pe@arrl.net”

#3. DistList = “K6KP, W6TDM, SMTP:kn6pe@arrl._net”
To = DistList

Notes
1.  Allstandard address rules are in force when addressing messages to a Winlink station.

TRUE, FALSE

Description
System Predefined Variable, CONSTANTS, used as part of a conditional test.

Example
IF Exists(Fname) = TRUE then

Notes
1.  TRUE and FALSE can be used to check for this case. Additional functions may be
added in the future to take advantage of this.

URGENT

Description
System Predefined Variable. Holds the outgoing message URGENT Flag.

Syntax
URGENT = TRUE | FALSE Default = FALSE

Example
#1. URGENT = TRUE
#2. URGENT = FALSE

Notes
1.  Once the URGENT flag is set, it is applied to all subsequent created messages. It is

recommended that you explicitly declare whether a message should be URGENT or not.

2. Initially, URGENT defaults to FALSE.

ValidFileName()

Description

Creates a valid full-path file name from a path and name components. This is typically used
when creating files from Outpost messages, and there may be invalid file name characters in
the Subject name.

Syntax
<Var_name> = ValidFileName(<string>)

Example
SCRIPT
Var FullName as String
Var FixedName as String

BEGIN

SUBJECT = "CUP103: c:\data\Weather report.txt"
FixedName = ValidFileName(SUBJECT)

FullName = "c:\data\" & FixedName

Print(Ful IName)

END

Notes
1. The following 9 characters work for Outpost subjects but are invalid file name
characters: c/\N*?2 <>
2. The “:” character will be replaced with a “;”
3. The /\ *? | <> “ characters will be replaced with a “~”
4. So, in the above example, the FixedName is set to...
CUP103; c;~data~Weather report.txt

Var

Description
Declares a user-defined variable that can be subsequently assigned and manipulated

Syntax
VAR <var_name> AS [STRING | NUMBER]

Example
Script

3 February 2022

54



Outpost Scripting v3.5.1

Users Guide

VAR Fname as string

VAR Shelter24 as string
VAR X as number

BEGIN

Notes

1. All user-defined variables must be defined after the SCRIPT statement and before the

BEGIN statement.

2. Variable names must start with a letter and follow with any combinations of letters,
numbers and the underscore (_) character. All other punctuation are not allowed.

3. Var types are String or Number

While... Description
Endwhile Executes a block of statements as long as the condition is true.
Syntax
WHILE <condition>
<statements>
ENDWHILE
Example
SCRIPT
VAR Fname as string
BEGIN
FINDFILE(*“c:\data\” & “*._txt”)
Fname = NextFile(0)
While Exists(Fname) = TRUE
Print(Fname)
Fname = NextFile(0)
ENDWHILE
END
Notes
1. See Also: IF, LOOP
WriteFile() Description

Writes data to a named file

Syntax
WRITEFILE( <data>, <Ffile_name> )
data: a text string or variable of the data to be written
File_name: a string or variable of the name of the file to be created
Example
SCRIPT
VAR MsglID as number
BEGIN
FindMessage (1,4, "NOAA*'") “ set up the msg search
MsgID = NextMessage(0) “ loads the current msg

while msgid > 0
Print(""Found Msg: " & SUBJECT)
WriteFile(MESSAGE, Subject & “.txt™)
MsgID = NextMessage(0)

endwhile

END
Example #2

* Append a line of text to an existing file
SCRIPT

VAR Fname as string " Name of a file

VAR Fdata as string " Contents of the file
BEGIN

Fname = "C:\data\Master.ini'" " set the file name

Fdata

ReadFile(Fname) " Read the file contents

3 February 2022

55



Outpost Scripting v3.5.1 Users Guide

Fdata = Fdata & CRLF & ""Cmd=0" * append a line of text
WriteFile(Fdata, Fname) " Write the new file contents
END

Notes

1.  Any content can be written to a file. If the file already exists, it will first be deleted.

2. The data to be written can be the explicit string in quotations, or a variable containing
the string.

3. Inthe above example, the NextMessage loads the next message and all its variables
into the system variables: BBS, FROM, TO, SUBJECT, MESSAGE. The
WriteFi le statement writes the content of the variable MESSAGE (the current
Outpost message) to the file by the name “<subject>.txt”; the file has the subject
string in the title.

4. Inthe 2nd example, this is a way to append data to a file. Essentially, read the
contents, append the addition, and write it back.

3 February 2022 56



